Degenate Parabolic Boundary Value Problems for Quasilinear ion Equations in L^1(0,1)
碩士 === 國立中央大學 === 數學系 === 81 === This thesis is motivated by the paper [8], which studies the following degenerate parabolic problem u.sub.(t)(x,t)=.prtl./. prtl.x(.prtl./.prtl.x(.beta.u)) -.prtl./.prtl.x(.alpha.u),(x,t). in.(0,1)*(0,.inf.)...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
1993
|
Online Access: | http://ndltd.ncl.edu.tw/handle/84652943766114984836 |
id |
ndltd-TW-081NCU00479010 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-081NCU004790102016-07-20T04:11:45Z http://ndltd.ncl.edu.tw/handle/84652943766114984836 Degenate Parabolic Boundary Value Problems for Quasilinear ion Equations in L^1(0,1) L^1(0,1)空間中擬線性反應-滲透方程式退化型拋物邊界值問題之研究 Suen Shin Sue 蘇孫鑫 碩士 國立中央大學 數學系 81 This thesis is motivated by the paper [8], which studies the following degenerate parabolic problem u.sub.(t)(x,t)=.prtl./. prtl.x(.prtl./.prtl.x(.beta.u)) -.prtl./.prtl.x(.alpha.u),(x,t). in.(0,1)*(0,.inf.) (1) .beta.(u(1,0))=0, .prtl./.prtl.x(.beta.( u(0,t)))-.alpha .(u(0,t))-.gamma.sub.(0)(.beta.(u(0,t)))=0 u( x,0)=u.sub.(0)(x) Our thesis here is to consider u.sub.(t)(x, t)=.prtl./.prtl.x.phi.(x,.prtl./.prtl.x( .beta.u))-.prtl./.prtl. x(.alpha.u),(x,t).in.(0,1)*(0,.inf. (2) .phi.(0,.prtl./.prtl.x(. beta.(u(0,t)))-.alpha.(u(0,t)) u.sub.(t)(x,t)=.prtl./.prtl.x. phi.(x,u.sub.(x)) -.gamma.sub.(0)(.beta.(u(0,t)))=0,.beta.(u(1, t))=0 +f(x,u),(x,t).in.(0,1)*(0,.inf.) u(x,0)=u.sub.(0)(x) (.phi.(0,u.sub.(x)(0,t)),-.phi.(1,u.sub.(x)(1,t))).in. Thus (1) is a special case of (1) if we take .phi.(x,.xi)=.xi We shall solve (2) by using nonlinear operator semigroup theory [1,3,5,6 ].This approach is to write (2) as an ordinary differential equation: du/dt=Au, t>0 (3) u(0)=u.sub.(0) in the real Banach space L.sup.(1)(0,1), where the boundary condition is absorbed in the definition of the domain D(A) of the nonlinear operator A. A is shown to be essentially m-dissipative, and then by the Crandall-Liggett theorem [4,5] the nonlinear operator T(t) exists.T(t).u.sub(0) will be a unique generalized solution to (3)[2],and then (2) is,in turn solved. Chin-Yuan Lin 林金源 1993 學位論文 ; thesis 18 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中央大學 === 數學系 === 81 === This thesis is motivated by the paper [8], which studies the
following degenerate parabolic problem u.sub.(t)(x,t)=.prtl./.
prtl.x(.prtl./.prtl.x(.beta.u)) -.prtl./.prtl.x(.alpha.u),(x,t).
in.(0,1)*(0,.inf.) (1) .beta.(u(1,0))=0, .prtl./.prtl.x(.beta.(
u(0,t)))-.alpha .(u(0,t))-.gamma.sub.(0)(.beta.(u(0,t)))=0 u(
x,0)=u.sub.(0)(x) Our thesis here is to consider u.sub.(t)(x,
t)=.prtl./.prtl.x.phi.(x,.prtl./.prtl.x( .beta.u))-.prtl./.prtl.
x(.alpha.u),(x,t).in.(0,1)*(0,.inf. (2) .phi.(0,.prtl./.prtl.x(.
beta.(u(0,t)))-.alpha.(u(0,t)) u.sub.(t)(x,t)=.prtl./.prtl.x.
phi.(x,u.sub.(x)) -.gamma.sub.(0)(.beta.(u(0,t)))=0,.beta.(u(1,
t))=0 +f(x,u),(x,t).in.(0,1)*(0,.inf.) u(x,0)=u.sub.(0)(x)
(.phi.(0,u.sub.(x)(0,t)),-.phi.(1,u.sub.(x)(1,t))).in. Thus (1)
is a special case of (1) if we take .phi.(x,.xi)=.xi We shall
solve (2) by using nonlinear operator semigroup theory [1,3,5,6
].This approach is to write (2) as an ordinary differential
equation: du/dt=Au, t>0 (3) u(0)=u.sub.(0) in the real Banach
space L.sup.(1)(0,1), where the boundary condition is absorbed
in the definition of the domain D(A) of the nonlinear operator
A. A is shown to be essentially m-dissipative, and then by the
Crandall-Liggett theorem [4,5] the nonlinear operator T(t)
exists.T(t).u.sub(0) will be a unique generalized solution to
(3)[2],and then (2) is,in turn solved.
|
author2 |
Chin-Yuan Lin |
author_facet |
Chin-Yuan Lin Suen Shin Sue 蘇孫鑫 |
author |
Suen Shin Sue 蘇孫鑫 |
spellingShingle |
Suen Shin Sue 蘇孫鑫 Degenate Parabolic Boundary Value Problems for Quasilinear ion Equations in L^1(0,1) |
author_sort |
Suen Shin Sue |
title |
Degenate Parabolic Boundary Value Problems for Quasilinear ion Equations in L^1(0,1) |
title_short |
Degenate Parabolic Boundary Value Problems for Quasilinear ion Equations in L^1(0,1) |
title_full |
Degenate Parabolic Boundary Value Problems for Quasilinear ion Equations in L^1(0,1) |
title_fullStr |
Degenate Parabolic Boundary Value Problems for Quasilinear ion Equations in L^1(0,1) |
title_full_unstemmed |
Degenate Parabolic Boundary Value Problems for Quasilinear ion Equations in L^1(0,1) |
title_sort |
degenate parabolic boundary value problems for quasilinear ion equations in l^1(0,1) |
publishDate |
1993 |
url |
http://ndltd.ncl.edu.tw/handle/84652943766114984836 |
work_keys_str_mv |
AT suenshinsue degenateparabolicboundaryvalueproblemsforquasilinearionequationsinl101 AT sūsūnxīn degenateparabolicboundaryvalueproblemsforquasilinearionequationsinl101 AT suenshinsue l101kōngjiānzhōngnǐxiànxìngfǎnyīngshèntòufāngchéngshìtuìhuàxíngpāowùbiānjièzhíwèntízhīyánjiū AT sūsūnxīn l101kōngjiānzhōngnǐxiànxìngfǎnyīngshèntòufāngchéngshìtuìhuàxíngpāowùbiānjièzhíwèntízhīyánjiū |
_version_ |
1718355041082933248 |