An Approximated Global Approach for Polynomial Programs with Continuous Variables and Its Applications

碩士 === 國立交通大學 === 資訊管理研究所 === 81 === Sherali及Tuncbilek在[17]一文中,利用重建構線性化的技巧,將連續多 項式轉成線性式並得到求解問題的最佳解。Sheraili及Tuncbilek的方法 是目前文獻上所知最好的連續多項式線性轉換法。本文提出一線性轉換法 ,將連續多項式轉為一個近似的零壹整數問題。利用這個方法,我們可以 求解多項式規劃問題的近似最佳解,並可以使轉換後每一多項式項的誤差...

Full description

Bibliographic Details
Main Authors: Chou Chi Tarn, 周奇潭
Other Authors: Mr. Li
Format: Others
Language:zh-TW
Published: 1993
Online Access:http://ndltd.ncl.edu.tw/handle/58762125894977935033
id ndltd-TW-081NCTU0396003
record_format oai_dc
spelling ndltd-TW-081NCTU03960032016-07-20T04:11:36Z http://ndltd.ncl.edu.tw/handle/58762125894977935033 An Approximated Global Approach for Polynomial Programs with Continuous Variables and Its Applications 連續多項式近似最佳解法及其應用 Chou Chi Tarn 周奇潭 碩士 國立交通大學 資訊管理研究所 81 Sherali及Tuncbilek在[17]一文中,利用重建構線性化的技巧,將連續多 項式轉成線性式並得到求解問題的最佳解。Sheraili及Tuncbilek的方法 是目前文獻上所知最好的連續多項式線性轉換法。本文提出一線性轉換法 ,將連續多項式轉為一個近似的零壹整數問題。利用這個方法,我們可以 求解多項式規劃問題的近似最佳解,並可以使轉換後每一多項式項的誤差 值小於最大容忍誤差值。本法之優點為 1、解題步驟較Sherali及 Tuncbilek的方法來得簡單;2、可以求得近似最佳解;3、可以設定最大 容忍誤差值以控制所求解答的精確程度。本文亦利用此方法來求解文獻 [21]上的多項式規劃問題,並且都可以得到其近似最佳解。此外,本文亦 以設施設計問題為例,說明本研究方法如何應用到實際問題中。 Sherali and Tuncbilek[17] uses a Reformulation Linearization Technique to linearize a polynomial term with continous variables and obtains a global optimum. This method is known as the best one of linearization transformation method in literatures. This thesis proposes a linearization approach to transform a polynomial term with continous variables as a approximated 0-1 integer program. By using this approach, we could obtain a approximated optimal solution and control the error value under the maximum tolerable error value. The proposed has some advantages as following: 1. the solving steps of the proposed approach are much easier than Sherali and Tuncbilek; 2. the proposed approach could obtain a approximated optimal solution; 3. the proposed approach can set maximum tolerable error value for the accuracy of the approximated solution. This thesis uses the proposed approach to solve some polynomial programs in literature [21] and can also obtain the approximated optimal solutions. Moreover, we illustrate that how this proposed approach applies to facility layout problem. Mr. Li 黎先生 1993 學位論文 ; thesis 41 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 資訊管理研究所 === 81 === Sherali及Tuncbilek在[17]一文中,利用重建構線性化的技巧,將連續多 項式轉成線性式並得到求解問題的最佳解。Sheraili及Tuncbilek的方法 是目前文獻上所知最好的連續多項式線性轉換法。本文提出一線性轉換法 ,將連續多項式轉為一個近似的零壹整數問題。利用這個方法,我們可以 求解多項式規劃問題的近似最佳解,並可以使轉換後每一多項式項的誤差 值小於最大容忍誤差值。本法之優點為 1、解題步驟較Sherali及 Tuncbilek的方法來得簡單;2、可以求得近似最佳解;3、可以設定最大 容忍誤差值以控制所求解答的精確程度。本文亦利用此方法來求解文獻 [21]上的多項式規劃問題,並且都可以得到其近似最佳解。此外,本文亦 以設施設計問題為例,說明本研究方法如何應用到實際問題中。 Sherali and Tuncbilek[17] uses a Reformulation Linearization Technique to linearize a polynomial term with continous variables and obtains a global optimum. This method is known as the best one of linearization transformation method in literatures. This thesis proposes a linearization approach to transform a polynomial term with continous variables as a approximated 0-1 integer program. By using this approach, we could obtain a approximated optimal solution and control the error value under the maximum tolerable error value. The proposed has some advantages as following: 1. the solving steps of the proposed approach are much easier than Sherali and Tuncbilek; 2. the proposed approach could obtain a approximated optimal solution; 3. the proposed approach can set maximum tolerable error value for the accuracy of the approximated solution. This thesis uses the proposed approach to solve some polynomial programs in literature [21] and can also obtain the approximated optimal solutions. Moreover, we illustrate that how this proposed approach applies to facility layout problem.
author2 Mr. Li
author_facet Mr. Li
Chou Chi Tarn
周奇潭
author Chou Chi Tarn
周奇潭
spellingShingle Chou Chi Tarn
周奇潭
An Approximated Global Approach for Polynomial Programs with Continuous Variables and Its Applications
author_sort Chou Chi Tarn
title An Approximated Global Approach for Polynomial Programs with Continuous Variables and Its Applications
title_short An Approximated Global Approach for Polynomial Programs with Continuous Variables and Its Applications
title_full An Approximated Global Approach for Polynomial Programs with Continuous Variables and Its Applications
title_fullStr An Approximated Global Approach for Polynomial Programs with Continuous Variables and Its Applications
title_full_unstemmed An Approximated Global Approach for Polynomial Programs with Continuous Variables and Its Applications
title_sort approximated global approach for polynomial programs with continuous variables and its applications
publishDate 1993
url http://ndltd.ncl.edu.tw/handle/58762125894977935033
work_keys_str_mv AT chouchitarn anapproximatedglobalapproachforpolynomialprogramswithcontinuousvariablesanditsapplications
AT zhōuqítán anapproximatedglobalapproachforpolynomialprogramswithcontinuousvariablesanditsapplications
AT chouchitarn liánxùduōxiàngshìjìnshìzuìjiājiěfǎjíqíyīngyòng
AT zhōuqítán liánxùduōxiàngshìjìnshìzuìjiājiěfǎjíqíyīngyòng
AT chouchitarn approximatedglobalapproachforpolynomialprogramswithcontinuousvariablesanditsapplications
AT zhōuqítán approximatedglobalapproachforpolynomialprogramswithcontinuousvariablesanditsapplications
_version_ 1718354557665280000