An Approximated Global Approach for Polynomial Programs with Continuous Variables and Its Applications
碩士 === 國立交通大學 === 資訊管理研究所 === 81 === Sherali及Tuncbilek在[17]一文中,利用重建構線性化的技巧,將連續多 項式轉成線性式並得到求解問題的最佳解。Sheraili及Tuncbilek的方法 是目前文獻上所知最好的連續多項式線性轉換法。本文提出一線性轉換法 ,將連續多項式轉為一個近似的零壹整數問題。利用這個方法,我們可以 求解多項式規劃問題的近似最佳解,並可以使轉換後每一多項式項的誤差...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1993
|
Online Access: | http://ndltd.ncl.edu.tw/handle/58762125894977935033 |
Summary: | 碩士 === 國立交通大學 === 資訊管理研究所 === 81 === Sherali及Tuncbilek在[17]一文中,利用重建構線性化的技巧,將連續多
項式轉成線性式並得到求解問題的最佳解。Sheraili及Tuncbilek的方法
是目前文獻上所知最好的連續多項式線性轉換法。本文提出一線性轉換法
,將連續多項式轉為一個近似的零壹整數問題。利用這個方法,我們可以
求解多項式規劃問題的近似最佳解,並可以使轉換後每一多項式項的誤差
值小於最大容忍誤差值。本法之優點為 1、解題步驟較Sherali及
Tuncbilek的方法來得簡單;2、可以求得近似最佳解;3、可以設定最大
容忍誤差值以控制所求解答的精確程度。本文亦利用此方法來求解文獻
[21]上的多項式規劃問題,並且都可以得到其近似最佳解。此外,本文亦
以設施設計問題為例,說明本研究方法如何應用到實際問題中。
Sherali and Tuncbilek[17] uses a Reformulation Linearization
Technique to linearize a polynomial term with continous
variables and obtains a global optimum. This method is known as
the best one of linearization transformation method in
literatures. This thesis proposes a linearization approach to
transform a polynomial term with continous variables as a
approximated 0-1 integer program. By using this approach, we
could obtain a approximated optimal solution and control the
error value under the maximum tolerable error value. The
proposed has some advantages as following: 1. the solving
steps of the proposed approach are much easier than Sherali and
Tuncbilek; 2. the proposed approach could obtain a approximated
optimal solution; 3. the proposed approach can set maximum
tolerable error value for the accuracy of the approximated
solution. This thesis uses the proposed approach to solve some
polynomial programs in literature [21] and can also obtain the
approximated optimal solutions. Moreover, we illustrate that
how this proposed approach applies to facility layout problem.
|
---|