Some Matrix Constructions of Group Divisible Designs
碩士 === 國立政治大學 === 應用數學研究所 === 81 === In this thesis we use matrices to construct group divisible designs (GDDs). We list two type of constructions, the first type is -- due to W.H. Heamers -- A .crtimes. J + I .crtimes. D and use this cons...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
1993
|
Online Access: | http://ndltd.ncl.edu.tw/handle/06798938925518826431 |
id |
ndltd-TW-081NCCU0507006 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-081NCCU05070062015-10-13T17:44:43Z http://ndltd.ncl.edu.tw/handle/06798938925518826431 Some Matrix Constructions of Group Divisible Designs 一些可分組設計的矩陣建構 Cheng Szu-En 鄭斯恩 碩士 國立政治大學 應用數學研究所 81 In this thesis we use matrices to construct group divisible designs (GDDs). We list two type of constructions, the first type is -- due to W.H. Heamers -- A .crtimes. J + I .crtimes. D and use this construction we classify all the (m,n,k,. lambda.1, .lambda.2) GDD with r - .lambda.1 = 1 in three classes according to (i) A = 0 or J-I, (ii) A is the adjacency matrix of a strongly regular graph with .mu. - .lambda. = 1, (iii) J - 2A is the core of a skew-symmetric Hadamard matrix. The second type is A .crtimes. D + .Abar .crtimes. .Dbar , this type can construct many regular and semi-regular GDDs with b=4(r-.lambda.2). In the thesis we investigate related topics that occur in these constructions. E. T. Tan 陳永秋 1993 學位論文 ; thesis 55 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立政治大學 === 應用數學研究所 === 81 === In this thesis we use matrices to construct group divisible
designs (GDDs). We list two type of constructions, the first
type is -- due to W.H. Heamers -- A .crtimes. J + I .crtimes.
D and use this construction we classify all the (m,n,k,.
lambda.1, .lambda.2) GDD with r - .lambda.1 = 1 in three
classes according to (i) A = 0 or J-I, (ii) A is the adjacency
matrix of a strongly regular graph with .mu. - .lambda. = 1,
(iii) J - 2A is the core of a skew-symmetric Hadamard matrix.
The second type is A .crtimes. D + .Abar .crtimes. .Dbar ,
this type can construct many regular and semi-regular GDDs with
b=4(r-.lambda.2). In the thesis we investigate related topics
that occur in these constructions.
|
author2 |
E. T. Tan |
author_facet |
E. T. Tan Cheng Szu-En 鄭斯恩 |
author |
Cheng Szu-En 鄭斯恩 |
spellingShingle |
Cheng Szu-En 鄭斯恩 Some Matrix Constructions of Group Divisible Designs |
author_sort |
Cheng Szu-En |
title |
Some Matrix Constructions of Group Divisible Designs |
title_short |
Some Matrix Constructions of Group Divisible Designs |
title_full |
Some Matrix Constructions of Group Divisible Designs |
title_fullStr |
Some Matrix Constructions of Group Divisible Designs |
title_full_unstemmed |
Some Matrix Constructions of Group Divisible Designs |
title_sort |
some matrix constructions of group divisible designs |
publishDate |
1993 |
url |
http://ndltd.ncl.edu.tw/handle/06798938925518826431 |
work_keys_str_mv |
AT chengszuen somematrixconstructionsofgroupdivisibledesigns AT zhèngsīēn somematrixconstructionsofgroupdivisibledesigns AT chengszuen yīxiēkěfēnzǔshèjìdejǔzhènjiàngòu AT zhèngsīēn yīxiēkěfēnzǔshèjìdejǔzhènjiàngòu |
_version_ |
1717784593577279488 |