Some Matrix Constructions of Group Divisible Designs

碩士 === 國立政治大學 === 應用數學研究所 === 81 === In this thesis we use matrices to construct group divisible designs (GDDs). We list two type of constructions, the first type is -- due to W.H. Heamers -- A .crtimes. J + I .crtimes. D and use this cons...

Full description

Bibliographic Details
Main Authors: Cheng Szu-En, 鄭斯恩
Other Authors: E. T. Tan
Format: Others
Language:en_US
Published: 1993
Online Access:http://ndltd.ncl.edu.tw/handle/06798938925518826431
id ndltd-TW-081NCCU0507006
record_format oai_dc
spelling ndltd-TW-081NCCU05070062015-10-13T17:44:43Z http://ndltd.ncl.edu.tw/handle/06798938925518826431 Some Matrix Constructions of Group Divisible Designs 一些可分組設計的矩陣建構 Cheng Szu-En 鄭斯恩 碩士 國立政治大學 應用數學研究所 81 In this thesis we use matrices to construct group divisible designs (GDDs). We list two type of constructions, the first type is -- due to W.H. Heamers -- A .crtimes. J + I .crtimes. D and use this construction we classify all the (m,n,k,. lambda.1, .lambda.2) GDD with r - .lambda.1 = 1 in three classes according to (i) A = 0 or J-I, (ii) A is the adjacency matrix of a strongly regular graph with .mu. - .lambda. = 1, (iii) J - 2A is the core of a skew-symmetric Hadamard matrix. The second type is A .crtimes. D + .Abar .crtimes. .Dbar , this type can construct many regular and semi-regular GDDs with b=4(r-.lambda.2). In the thesis we investigate related topics that occur in these constructions. E. T. Tan 陳永秋 1993 學位論文 ; thesis 55 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立政治大學 === 應用數學研究所 === 81 === In this thesis we use matrices to construct group divisible designs (GDDs). We list two type of constructions, the first type is -- due to W.H. Heamers -- A .crtimes. J + I .crtimes. D and use this construction we classify all the (m,n,k,. lambda.1, .lambda.2) GDD with r - .lambda.1 = 1 in three classes according to (i) A = 0 or J-I, (ii) A is the adjacency matrix of a strongly regular graph with .mu. - .lambda. = 1, (iii) J - 2A is the core of a skew-symmetric Hadamard matrix. The second type is A .crtimes. D + .Abar .crtimes. .Dbar , this type can construct many regular and semi-regular GDDs with b=4(r-.lambda.2). In the thesis we investigate related topics that occur in these constructions.
author2 E. T. Tan
author_facet E. T. Tan
Cheng Szu-En
鄭斯恩
author Cheng Szu-En
鄭斯恩
spellingShingle Cheng Szu-En
鄭斯恩
Some Matrix Constructions of Group Divisible Designs
author_sort Cheng Szu-En
title Some Matrix Constructions of Group Divisible Designs
title_short Some Matrix Constructions of Group Divisible Designs
title_full Some Matrix Constructions of Group Divisible Designs
title_fullStr Some Matrix Constructions of Group Divisible Designs
title_full_unstemmed Some Matrix Constructions of Group Divisible Designs
title_sort some matrix constructions of group divisible designs
publishDate 1993
url http://ndltd.ncl.edu.tw/handle/06798938925518826431
work_keys_str_mv AT chengszuen somematrixconstructionsofgroupdivisibledesigns
AT zhèngsīēn somematrixconstructionsofgroupdivisibledesigns
AT chengszuen yīxiēkěfēnzǔshèjìdejǔzhènjiàngòu
AT zhèngsīēn yīxiēkěfēnzǔshèjìdejǔzhènjiàngòu
_version_ 1717784593577279488