On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2.
碩士 === 國立中正大學 === 應用數學研究所 === 81 === In this paper we investigate the conformal Gaussian curvature equation (P.D.E.) : .DELTA.u + K(x)exp(2u) = 0 in .R^2. When K is radially symmetric and radial solutions u are seeked, above equation can be...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
1993
|
Online Access: | http://ndltd.ncl.edu.tw/handle/90323664543080751952 |
id |
ndltd-TW-081CCU00507005 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-081CCU005070052015-10-13T17:44:41Z http://ndltd.ncl.edu.tw/handle/90323664543080751952 On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2. 方程式.DELTA.u+K(x)exp(2u)=0之奇異解 Chen, Shyh Huei 陳世輝 碩士 國立中正大學 應用數學研究所 81 In this paper we investigate the conformal Gaussian curvature equation (P.D.E.) : .DELTA.u + K(x)exp(2u) = 0 in .R^2. When K is radially symmetric and radial solutions u are seeked, above equation can be reduced to an ordinary differential (O.D.E.) : u''(r) + 1/r u'(r) + K(r) exp(2u) =0, r>0. In theis paper we are interested in the singular solutions u of (O.D.E.) having following asymptotic behaviors: u(r) = a log(r) + .alpha. + o(1) as r .arrr. 0 u(r) = b log(r) + o(log(r)) as r .arrr. .inf. We shall give some examples which the exact solutions can be written down explicitly. These examples indicate us theof b upon a and .alpha. . And we shall plot numberically the dependence of b on .alpha. for a=0.17 Cheng, Kuo Shung 鄭國順 1993 學位論文 ; thesis 0 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中正大學 === 應用數學研究所 === 81 === In this paper we investigate the conformal Gaussian curvature
equation (P.D.E.) : .DELTA.u + K(x)exp(2u) = 0 in .R^2. When K
is radially symmetric and radial solutions u are seeked, above
equation can be reduced to an ordinary differential (O.D.E.) :
u''(r) + 1/r u'(r) + K(r) exp(2u) =0, r>0. In theis paper we
are interested in the singular solutions u of (O.D.E.) having
following asymptotic behaviors: u(r) = a log(r) + .alpha. +
o(1) as r .arrr. 0 u(r) = b log(r) + o(log(r)) as r .arrr.
.inf. We shall give some examples which the exact solutions can
be written down explicitly. These examples indicate us theof b
upon a and .alpha. . And we shall plot numberically the
dependence of b on .alpha. for a=0.17
|
author2 |
Cheng, Kuo Shung |
author_facet |
Cheng, Kuo Shung Chen, Shyh Huei 陳世輝 |
author |
Chen, Shyh Huei 陳世輝 |
spellingShingle |
Chen, Shyh Huei 陳世輝 On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2. |
author_sort |
Chen, Shyh Huei |
title |
On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2. |
title_short |
On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2. |
title_full |
On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2. |
title_fullStr |
On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2. |
title_full_unstemmed |
On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2. |
title_sort |
on the singular solutions of .delta.u + k(x)exp(2u) = 0 in .r^2. |
publishDate |
1993 |
url |
http://ndltd.ncl.edu.tw/handle/90323664543080751952 |
work_keys_str_mv |
AT chenshyhhuei onthesingularsolutionsofdeltaukxexp2u0inr2 AT chénshìhuī onthesingularsolutionsofdeltaukxexp2u0inr2 AT chenshyhhuei fāngchéngshìdeltaukxexp2u0zhīqíyìjiě AT chénshìhuī fāngchéngshìdeltaukxexp2u0zhīqíyìjiě |
_version_ |
1717784037653741568 |