On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2.

碩士 === 國立中正大學 === 應用數學研究所 === 81 === In this paper we investigate the conformal Gaussian curvature equation (P.D.E.) : .DELTA.u + K(x)exp(2u) = 0 in .R^2. When K is radially symmetric and radial solutions u are seeked, above equation can be...

Full description

Bibliographic Details
Main Authors: Chen, Shyh Huei, 陳世輝
Other Authors: Cheng, Kuo Shung
Format: Others
Language:en_US
Published: 1993
Online Access:http://ndltd.ncl.edu.tw/handle/90323664543080751952
id ndltd-TW-081CCU00507005
record_format oai_dc
spelling ndltd-TW-081CCU005070052015-10-13T17:44:41Z http://ndltd.ncl.edu.tw/handle/90323664543080751952 On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2. 方程式.DELTA.u+K(x)exp(2u)=0之奇異解 Chen, Shyh Huei 陳世輝 碩士 國立中正大學 應用數學研究所 81 In this paper we investigate the conformal Gaussian curvature equation (P.D.E.) : .DELTA.u + K(x)exp(2u) = 0 in .R^2. When K is radially symmetric and radial solutions u are seeked, above equation can be reduced to an ordinary differential (O.D.E.) : u''(r) + 1/r u'(r) + K(r) exp(2u) =0, r>0. In theis paper we are interested in the singular solutions u of (O.D.E.) having following asymptotic behaviors: u(r) = a log(r) + .alpha. + o(1) as r .arrr. 0 u(r) = b log(r) + o(log(r)) as r .arrr. .inf. We shall give some examples which the exact solutions can be written down explicitly. These examples indicate us theof b upon a and .alpha. . And we shall plot numberically the dependence of b on .alpha. for a=0.17 Cheng, Kuo Shung 鄭國順 1993 學位論文 ; thesis 0 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中正大學 === 應用數學研究所 === 81 === In this paper we investigate the conformal Gaussian curvature equation (P.D.E.) : .DELTA.u + K(x)exp(2u) = 0 in .R^2. When K is radially symmetric and radial solutions u are seeked, above equation can be reduced to an ordinary differential (O.D.E.) : u''(r) + 1/r u'(r) + K(r) exp(2u) =0, r>0. In theis paper we are interested in the singular solutions u of (O.D.E.) having following asymptotic behaviors: u(r) = a log(r) + .alpha. + o(1) as r .arrr. 0 u(r) = b log(r) + o(log(r)) as r .arrr. .inf. We shall give some examples which the exact solutions can be written down explicitly. These examples indicate us theof b upon a and .alpha. . And we shall plot numberically the dependence of b on .alpha. for a=0.17
author2 Cheng, Kuo Shung
author_facet Cheng, Kuo Shung
Chen, Shyh Huei
陳世輝
author Chen, Shyh Huei
陳世輝
spellingShingle Chen, Shyh Huei
陳世輝
On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2.
author_sort Chen, Shyh Huei
title On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2.
title_short On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2.
title_full On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2.
title_fullStr On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2.
title_full_unstemmed On the Singular Solutions of .DELTA.u + K(x)exp(2u) = 0 in .R^2.
title_sort on the singular solutions of .delta.u + k(x)exp(2u) = 0 in .r^2.
publishDate 1993
url http://ndltd.ncl.edu.tw/handle/90323664543080751952
work_keys_str_mv AT chenshyhhuei onthesingularsolutionsofdeltaukxexp2u0inr2
AT chénshìhuī onthesingularsolutionsofdeltaukxexp2u0inr2
AT chenshyhhuei fāngchéngshìdeltaukxexp2u0zhīqíyìjiě
AT chénshìhuī fāngchéngshìdeltaukxexp2u0zhīqíyìjiě
_version_ 1717784037653741568