On Equivariant Bordism Groups

碩士 === 淡江大學 === 數學研究所 === 62 ===   Let G be a compact Lie group, F>F'be families of subgroups of G, and (X,A;τ) be a topological pair with a given G-action τon (X,A). Let M be an oriented compact G-manifold with boundary. One may define (F,F')-free bordism elements of (X,A;τ) and then...

Full description

Bibliographic Details
Main Author: 李惠明
Other Authors: 吳青木
Format: Others
Language:zh-TW
Online Access:http://ndltd.ncl.edu.tw/handle/01440063427022701514
id ndltd-TW-062TKU03479002
record_format oai_dc
spelling ndltd-TW-062TKU034790022016-06-13T04:16:59Z http://ndltd.ncl.edu.tw/handle/01440063427022701514 On Equivariant Bordism Groups 李惠明 碩士 淡江大學 數學研究所 62   Let G be a compact Lie group, F>F'be families of subgroups of G, and (X,A;τ) be a topological pair with a given G-action τon (X,A). Let M be an oriented compact G-manifold with boundary. One may define (F,F')-free bordism elements of (X,A;τ) and then define equivariant bordism groups θG*(F,F') and the natural homomorphism □*may define an equivariant generalized homology theory in the sence of Bredon [2].   We discuss the restriction and extension homorphism, and obtain some properties such as: If eHG is an extension and π*is the projection homomorphism induced by the projective mapping π:G -> G/H=□ where H is a normal subgroup, then π*eHG=0; we have π*j=identity. 吳青木 學位論文 ; thesis 18 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 淡江大學 === 數學研究所 === 62 ===   Let G be a compact Lie group, F>F'be families of subgroups of G, and (X,A;τ) be a topological pair with a given G-action τon (X,A). Let M be an oriented compact G-manifold with boundary. One may define (F,F')-free bordism elements of (X,A;τ) and then define equivariant bordism groups θG*(F,F') and the natural homomorphism □*may define an equivariant generalized homology theory in the sence of Bredon [2].   We discuss the restriction and extension homorphism, and obtain some properties such as: If eHG is an extension and π*is the projection homomorphism induced by the projective mapping π:G -> G/H=□ where H is a normal subgroup, then π*eHG=0; we have π*j=identity.
author2 吳青木
author_facet 吳青木
李惠明
author 李惠明
spellingShingle 李惠明
On Equivariant Bordism Groups
author_sort 李惠明
title On Equivariant Bordism Groups
title_short On Equivariant Bordism Groups
title_full On Equivariant Bordism Groups
title_fullStr On Equivariant Bordism Groups
title_full_unstemmed On Equivariant Bordism Groups
title_sort on equivariant bordism groups
url http://ndltd.ncl.edu.tw/handle/01440063427022701514
work_keys_str_mv AT lǐhuìmíng onequivariantbordismgroups
_version_ 1718302515029606400