On Equivariant Bordism Groups
碩士 === 淡江大學 === 數學研究所 === 62 === Let G be a compact Lie group, F>F'be families of subgroups of G, and (X,A;τ) be a topological pair with a given G-action τon (X,A). Let M be an oriented compact G-manifold with boundary. One may define (F,F')-free bordism elements of (X,A;τ) and then...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Online Access: | http://ndltd.ncl.edu.tw/handle/01440063427022701514 |
id |
ndltd-TW-062TKU03479002 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-062TKU034790022016-06-13T04:16:59Z http://ndltd.ncl.edu.tw/handle/01440063427022701514 On Equivariant Bordism Groups 李惠明 碩士 淡江大學 數學研究所 62 Let G be a compact Lie group, F>F'be families of subgroups of G, and (X,A;τ) be a topological pair with a given G-action τon (X,A). Let M be an oriented compact G-manifold with boundary. One may define (F,F')-free bordism elements of (X,A;τ) and then define equivariant bordism groups θG*(F,F') and the natural homomorphism □*may define an equivariant generalized homology theory in the sence of Bredon [2]. We discuss the restriction and extension homorphism, and obtain some properties such as: If eHG is an extension and π*is the projection homomorphism induced by the projective mapping π:G -> G/H=□ where H is a normal subgroup, then π*eHG=0; we have π*j=identity. 吳青木 學位論文 ; thesis 18 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 淡江大學 === 數學研究所 === 62 === Let G be a compact Lie group, F>F'be families of subgroups of G, and (X,A;τ) be a topological pair with a given G-action τon (X,A). Let M be an oriented compact G-manifold with boundary. One may define (F,F')-free bordism elements of (X,A;τ) and then define equivariant bordism groups θG*(F,F') and the natural homomorphism □*may define an equivariant generalized homology theory in the sence of Bredon [2].
We discuss the restriction and extension homorphism, and obtain some properties such as: If eHG is an extension and π*is the projection homomorphism induced by the projective mapping π:G -> G/H=□ where H is a normal subgroup, then π*eHG=0; we have π*j=identity.
|
author2 |
吳青木 |
author_facet |
吳青木 李惠明 |
author |
李惠明 |
spellingShingle |
李惠明 On Equivariant Bordism Groups |
author_sort |
李惠明 |
title |
On Equivariant Bordism Groups |
title_short |
On Equivariant Bordism Groups |
title_full |
On Equivariant Bordism Groups |
title_fullStr |
On Equivariant Bordism Groups |
title_full_unstemmed |
On Equivariant Bordism Groups |
title_sort |
on equivariant bordism groups |
url |
http://ndltd.ncl.edu.tw/handle/01440063427022701514 |
work_keys_str_mv |
AT lǐhuìmíng onequivariantbordismgroups |
_version_ |
1718302515029606400 |