Anionic Nitrogen Chelate Ligands: From Molecular Self-assembly to Small Molecule Activation

This thesis examines the use of anionic nitrogen chelate ligands in coordination-driven self-assembly and small molecule activation. The two classes of anionic nitrogen chelate ligands that were explored are β-diiminate and 4,5-diazafluorenide derivatives. Chapter 2 deals with Pd β-diiminate chemis...

Full description

Bibliographic Details
Main Author: Annibale, Vincent Tony
Other Authors: Song, Datong
Language:en_ca
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/1807/65636
id ndltd-TORONTO-oai-tspace.library.utoronto.ca-1807-65636
record_format oai_dc
spelling ndltd-TORONTO-oai-tspace.library.utoronto.ca-1807-656362014-07-17T04:15:07ZAnionic Nitrogen Chelate Ligands: From Molecular Self-assembly to Small Molecule ActivationAnnibale, Vincent TonySmall Molecule ActivationChelate LigandsSelf-Assembly0488This thesis examines the use of anionic nitrogen chelate ligands in coordination-driven self-assembly and small molecule activation. The two classes of anionic nitrogen chelate ligands that were explored are β-diiminate and 4,5-diazafluorenide derivatives. Chapter 2 deals with Pd β-diiminate chemistry. Chloro-bridged dimers served as versatile starting materials, and their reactivity toward pyridine and arylboronic acids was explored. An unusual transmetallation reaction with arylboronic acids triggered the self-assembly of tetrapallada-macrocycles. The formation of the self-assembled tetrapallada-macrocycles is through the generation of new Pd-C bonds. Chapter 3 deals with 4,5-diazafluorenide as an actor ligand in CO2 activation. A reversible formal insertion of CO2 into a remote ligand C-H bond was discovered. A variety of spectator metal centres were used to tune the reactivity of the actor ligand toward CO2. The spectator metal centre could even be replaced entirely with an organic group allowing for the first metal-free reversible tandem CO2 and C-H activation. Chapter 4 deals with the reactivity of dinuclear Rh 4,5-diazafluorenide-9-carboxylate complexes with dihydrogen in an attempt to reduce the trapped CO2 moiety. A series of stepwise stoichiometric reactions with H2, NMR experiments at low temperatures with added PPh3 or CO2, along with 13C-labelling experiments were conducted in an attempt to identify the products of this reaction and gain some mechanistic insight. Chapter 5 deals with using ambidentate 4,5-diazafluorene derivatives to synthesize linkage isomers, heterobimetallic complexes, and self-assembled macrocycles. The synthesis a new ligand family, 3,6-substituted 4,5-diazafluorene ligands is presented, along with coordination chemistry towards a {RuCp*}+ fragment. Finally in Chapter 6 the coordination chemistry of 3,6-diaryl substituted 4,5-diazafluorene derivatives was explored with the goal of generating low-coordinate species for the activation of small molecules, especially N2. The synthesis of the first trialkylborohydride complex of vanadium is presented.Song, Datong2014-062014-07-16T18:40:39ZNO_RESTRICTION2014-07-16T18:40:39Z2014-07-16Thesishttp://hdl.handle.net/1807/65636en_ca
collection NDLTD
language en_ca
sources NDLTD
topic Small Molecule Activation
Chelate Ligands
Self-Assembly
0488
spellingShingle Small Molecule Activation
Chelate Ligands
Self-Assembly
0488
Annibale, Vincent Tony
Anionic Nitrogen Chelate Ligands: From Molecular Self-assembly to Small Molecule Activation
description This thesis examines the use of anionic nitrogen chelate ligands in coordination-driven self-assembly and small molecule activation. The two classes of anionic nitrogen chelate ligands that were explored are β-diiminate and 4,5-diazafluorenide derivatives. Chapter 2 deals with Pd β-diiminate chemistry. Chloro-bridged dimers served as versatile starting materials, and their reactivity toward pyridine and arylboronic acids was explored. An unusual transmetallation reaction with arylboronic acids triggered the self-assembly of tetrapallada-macrocycles. The formation of the self-assembled tetrapallada-macrocycles is through the generation of new Pd-C bonds. Chapter 3 deals with 4,5-diazafluorenide as an actor ligand in CO2 activation. A reversible formal insertion of CO2 into a remote ligand C-H bond was discovered. A variety of spectator metal centres were used to tune the reactivity of the actor ligand toward CO2. The spectator metal centre could even be replaced entirely with an organic group allowing for the first metal-free reversible tandem CO2 and C-H activation. Chapter 4 deals with the reactivity of dinuclear Rh 4,5-diazafluorenide-9-carboxylate complexes with dihydrogen in an attempt to reduce the trapped CO2 moiety. A series of stepwise stoichiometric reactions with H2, NMR experiments at low temperatures with added PPh3 or CO2, along with 13C-labelling experiments were conducted in an attempt to identify the products of this reaction and gain some mechanistic insight. Chapter 5 deals with using ambidentate 4,5-diazafluorene derivatives to synthesize linkage isomers, heterobimetallic complexes, and self-assembled macrocycles. The synthesis a new ligand family, 3,6-substituted 4,5-diazafluorene ligands is presented, along with coordination chemistry towards a {RuCp*}+ fragment. Finally in Chapter 6 the coordination chemistry of 3,6-diaryl substituted 4,5-diazafluorene derivatives was explored with the goal of generating low-coordinate species for the activation of small molecules, especially N2. The synthesis of the first trialkylborohydride complex of vanadium is presented.
author2 Song, Datong
author_facet Song, Datong
Annibale, Vincent Tony
author Annibale, Vincent Tony
author_sort Annibale, Vincent Tony
title Anionic Nitrogen Chelate Ligands: From Molecular Self-assembly to Small Molecule Activation
title_short Anionic Nitrogen Chelate Ligands: From Molecular Self-assembly to Small Molecule Activation
title_full Anionic Nitrogen Chelate Ligands: From Molecular Self-assembly to Small Molecule Activation
title_fullStr Anionic Nitrogen Chelate Ligands: From Molecular Self-assembly to Small Molecule Activation
title_full_unstemmed Anionic Nitrogen Chelate Ligands: From Molecular Self-assembly to Small Molecule Activation
title_sort anionic nitrogen chelate ligands: from molecular self-assembly to small molecule activation
publishDate 2014
url http://hdl.handle.net/1807/65636
work_keys_str_mv AT annibalevincenttony anionicnitrogenchelateligandsfrommolecularselfassemblytosmallmoleculeactivation
_version_ 1716708235748048896