Repulsive-force Electrostatic Actuated Micromirror for Vector-based Display Systems

This thesis presents the design and development of a novel two-axis micromirror utilizing electrostatic, repulsive-force rotational actuators for laser scanned vector display systems. The micromirror consists of a 1.0 mm reflective mirror plate that can be rotated at high speeds to steer a laser be...

Full description

Bibliographic Details
Main Author: Chong, James
Other Authors: Ben Mrad, Ridha
Language:en_ca
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1807/42903
Description
Summary:This thesis presents the design and development of a novel two-axis micromirror utilizing electrostatic, repulsive-force rotational actuators for laser scanned vector display systems. The micromirror consists of a 1.0 mm reflective mirror plate that can be rotated at high speeds to steer a laser beam to generate images. Fabricated using PolyMUMPs, the micromirror is operated in a non-resonant mode between 0 V and 200 V and can achieve a maximum optical scanning angle of ±2.6° in each axis with a settling time as fast as 2.75 ms and a first resonant frequency of 1400 Hz. Open-loop control methods were developed for image correcting and improving image quality. The micromirror was integrated into a portable, handheld vector display device which included designing and developing driving circuits, device firmware, mechanical components and optical components.