Regression Modelling of Power Consumption for Heterogeneous Processors

This thesis is composed of two parts, that relate to both parallel and heterogeneous processing. The first describes DistCL, a distributed OpenCL framework that allows a cluster of GPUs to be programmed like a single device. It uses programmer-supplied meta-functions that associate work-items to mem...

Full description

Bibliographic Details
Main Author: Diop, Tahir
Other Authors: Anderson, Jason
Language:en_ca
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/1807/42818
Description
Summary:This thesis is composed of two parts, that relate to both parallel and heterogeneous processing. The first describes DistCL, a distributed OpenCL framework that allows a cluster of GPUs to be programmed like a single device. It uses programmer-supplied meta-functions that associate work-items to memory. DistCL achieves speedups of up to 29x using 32 peers. By comparing DistCL to SnuCL, we determine that the compute-to-transfer ratio of a benchmark is the best predictor of its performance scaling when distributed. The second is a statistical power model for the AMD Fusion heterogeneous processor. We present a systematic methodology to create a representative set of compute micro-benchmarks using data collected from real hardware. The power model is created with data from both micro-benchmarks and application benchmarks. The model showed an average predictive error of 6.9% on heterogeneous workloads. The Multi2Sim heterogeneous simulator was modified to support configurable power modelling.