Characterization and Inhibition of the Dimer Interface in Bacterial Small Multidrug Resistance Proteins

As one of the mechanisms of antibiotic resistance, bacteria use several families of membrane-embedded α-helical transporters to remove cytotoxic molecules from the cell. The small multidrug resistance protein family (SMR) is one such group of drug transporters that because of their relative small si...

Full description

Bibliographic Details
Main Author: Poulsen, Bradley E.
Other Authors: Deber, Charles M.
Language:en_ca
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1807/34849
Description
Summary:As one of the mechanisms of antibiotic resistance, bacteria use several families of membrane-embedded α-helical transporters to remove cytotoxic molecules from the cell. The small multidrug resistance protein family (SMR) is one such group of drug transporters that because of their relative small size [ca. 110 residues with four transmembrane (TM) helices] must form at the minimum dimers to efflux drugs. We have used the SMR homologue Hsmr from Halobacterium salinarum to investigate the oligomerization properties of the protein family at TM helix 4. We produced point mutations along the length of the TM4 helix in the full length Hsmr protein and assayed their dimerization and functional properties via SDS-PAGE and bacterial cell growth assays. We found that Hsmr forms functionally dependent dimers via an evolutionarily conserved 90GLxLIxxGV98 small residue heptad repeat. Upon investigation of the large hydrophobic residues in this motif by substituting each large residue to Ile, Leu, Met, Phe, and Val, we determined that Hsmr efflux function relies on an optimal level of dimerization. While some substitutions led to either decreased or increased dimer and substrate-binding strength, several Ile94 and Val98 mutants were equal to wild type dimerization levels but were nonfunctional, leading to the hypothesis of a mechanistic role at TM4 in addition to the locus of dimerization. The functionally sensitive TM4 dimer represents a potential target for SMR inhibition using a synthetic TM4 peptide mimetic. Using exponential decay measurements from a real-time cellular efflux assay, we observed the efflux decay constant was decreased by up to ~60% after treatment with the TM4 peptide inhibitor compared to control peptide treatments. Our results suggest that this approach could conceivably be used to design hydrophobic peptides for disruption of key TM-TM interactions of membrane proteins, and represent a valuable route to the discovery of new therapeutics.