A 2Gbps Optical Receiver with Integrated Photodiode in 90nm CMOS

The objective of this work was to integrate an optical receiver in a modern standard technology in a form amenable to multiple lanes. To accomplish this goal, a photodiode was integrated with the receiver in a standard 90nm CMOS process and the nominal process voltage of 1.2V was not exceeded. Two o...

Full description

Bibliographic Details
Main Author: Rousson, Alain
Other Authors: Chan Carusone, Anthony
Language:en_ca
Published: 2011
Subjects:
SML
Online Access:http://hdl.handle.net/1807/31414
Description
Summary:The objective of this work was to integrate an optical receiver in a modern standard technology in a form amenable to multiple lanes. To accomplish this goal, a photodiode was integrated with the receiver in a standard 90nm CMOS process and the nominal process voltage of 1.2V was not exceeded. Two optical lanes were integrated on chip with a pitch compatible with existing industry photodiode arrays. This work uses a non-SML photodiode to increase optical responsivity to 0.141A/W, almost 3 times higher than values typically reported for SML photodiodes. This receiver is the first integrated optical receiver reported in a standard CMOS technology with a feature size smaller than 0.13μm, which is necessary for the eventual integration of optical receivers with modern digital processing blocks on a single die. The traditional analog equalizer used in most integrated optical receivers is replaced with a high-pass filter and hysteresis latch for equalization. The receiver occupies a core area of 0.197mm2 and has an optical sensitivity of -3.7dBm at a 2Gbps data rate, while consuming 46.3mW.