Genetic Determinants of Carbohydrate Consumption

Background: There are a number of biological pathways that affect our ingestive behaviours, including energy homeostasis, food reward, and taste. Given that carbohydrates such as sugars, provide energy and a sweet taste, examining candidate genes in each pathway may help explain differences in carbo...

Full description

Bibliographic Details
Main Author: Eny, Karen M.
Other Authors: El-Sohemy, Ahmed
Language:en_ca
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/1807/26147
id ndltd-TORONTO-oai-tspace.library.utoronto.ca-1807-26147
record_format oai_dc
spelling ndltd-TORONTO-oai-tspace.library.utoronto.ca-1807-261472013-11-01T04:10:47ZGenetic Determinants of Carbohydrate ConsumptionEny, Karen M.NutrigenomicsCarbohydrateSugarsGeneticsPolymorphism0570Background: There are a number of biological pathways that affect our ingestive behaviours, including energy homeostasis, food reward, and taste. Given that carbohydrates such as sugars, provide energy and a sweet taste, examining candidate genes in each pathway may help explain differences in carbohydrate consumption behaviours. Objective: To determine whether variations in genes encoding a glucose transporter (GLUT2), a dopamine receptor (DRD2), and sweet taste receptor (TAS1R2) are associated with differences in sugar consumption in two distinct populations. Methods: Population 1 included diabetes-free young adults where dietary intake was assessed using a one month 196-item food frequency questionnaire (FFQ). Population 2 consisted of individuals with type 2 diabetes. Dietary intake was assessed using 3-day food records administered 2 weeks apart; food record 1 (FR1) and 2 (FR2). Subjects were genotyped for the Thr110Ile variation in GLUT2 (n1=587; n2=100), the C957T variation in DRD2 (n1=313; n2=100), and the Ser9Cys and Ile191Val variations in TAS1R2 (n1=1037; n2=100) using real-time PCR. Results: In comparison to individuals homozygous for the GLUT2 Thr allele, consumption of sugars was higher among Ile carriers in population 1 (133 ± 5 vs 118 ± 3 g/d, p=0.006) and population 2 on two separate food records (FR1: 112 ± 9 vs 87 ± 5 g/d, p=0.02; FR2: 105 ± 8 vs 78 ± 4 g/d, p=0.002). For the C957T variation in population 1, we detected a significant DRD2xSex interaction with the consumption of sucrose decreasing with each T allele among men (p=0.03) and a heterosis mode of inheritance among women where heterozygotes consumed the most (p=0.01). For TAS1R2, we detected a significant TAS1R2xBMI interaction and among overweight individuals, carriers of the Val allele consumed less sugars than those with the Ile/Ile genotype (103 ± 6 vs122 ± 6 g/d, p=0.01). In population 2, carriers of the Val allele consumed less sugars than individuals with the Ile/Ile genotype (83 ± 6 vs 99 ± 6 g/d, p=0.04) on FR2. Conclusions: Our findings demonstrate that genetic variation in GLUT2, DRD2 and TAS1R2 affect habitual sugar consumption and suggest that selection of dietary sugars can be influenced by different biological pathways.El-Sohemy, Ahmed2010-112011-02-15T14:46:38ZNO_RESTRICTION2011-02-15T14:46:38Z2011-02-15T14:46:38ZThesishttp://hdl.handle.net/1807/26147en_ca
collection NDLTD
language en_ca
sources NDLTD
topic Nutrigenomics
Carbohydrate
Sugars
Genetics
Polymorphism
0570
spellingShingle Nutrigenomics
Carbohydrate
Sugars
Genetics
Polymorphism
0570
Eny, Karen M.
Genetic Determinants of Carbohydrate Consumption
description Background: There are a number of biological pathways that affect our ingestive behaviours, including energy homeostasis, food reward, and taste. Given that carbohydrates such as sugars, provide energy and a sweet taste, examining candidate genes in each pathway may help explain differences in carbohydrate consumption behaviours. Objective: To determine whether variations in genes encoding a glucose transporter (GLUT2), a dopamine receptor (DRD2), and sweet taste receptor (TAS1R2) are associated with differences in sugar consumption in two distinct populations. Methods: Population 1 included diabetes-free young adults where dietary intake was assessed using a one month 196-item food frequency questionnaire (FFQ). Population 2 consisted of individuals with type 2 diabetes. Dietary intake was assessed using 3-day food records administered 2 weeks apart; food record 1 (FR1) and 2 (FR2). Subjects were genotyped for the Thr110Ile variation in GLUT2 (n1=587; n2=100), the C957T variation in DRD2 (n1=313; n2=100), and the Ser9Cys and Ile191Val variations in TAS1R2 (n1=1037; n2=100) using real-time PCR. Results: In comparison to individuals homozygous for the GLUT2 Thr allele, consumption of sugars was higher among Ile carriers in population 1 (133 ± 5 vs 118 ± 3 g/d, p=0.006) and population 2 on two separate food records (FR1: 112 ± 9 vs 87 ± 5 g/d, p=0.02; FR2: 105 ± 8 vs 78 ± 4 g/d, p=0.002). For the C957T variation in population 1, we detected a significant DRD2xSex interaction with the consumption of sucrose decreasing with each T allele among men (p=0.03) and a heterosis mode of inheritance among women where heterozygotes consumed the most (p=0.01). For TAS1R2, we detected a significant TAS1R2xBMI interaction and among overweight individuals, carriers of the Val allele consumed less sugars than those with the Ile/Ile genotype (103 ± 6 vs122 ± 6 g/d, p=0.01). In population 2, carriers of the Val allele consumed less sugars than individuals with the Ile/Ile genotype (83 ± 6 vs 99 ± 6 g/d, p=0.04) on FR2. Conclusions: Our findings demonstrate that genetic variation in GLUT2, DRD2 and TAS1R2 affect habitual sugar consumption and suggest that selection of dietary sugars can be influenced by different biological pathways.
author2 El-Sohemy, Ahmed
author_facet El-Sohemy, Ahmed
Eny, Karen M.
author Eny, Karen M.
author_sort Eny, Karen M.
title Genetic Determinants of Carbohydrate Consumption
title_short Genetic Determinants of Carbohydrate Consumption
title_full Genetic Determinants of Carbohydrate Consumption
title_fullStr Genetic Determinants of Carbohydrate Consumption
title_full_unstemmed Genetic Determinants of Carbohydrate Consumption
title_sort genetic determinants of carbohydrate consumption
publishDate 2010
url http://hdl.handle.net/1807/26147
work_keys_str_mv AT enykarenm geneticdeterminantsofcarbohydrateconsumption
_version_ 1716611695761162240