An In Vivo Neurophysiological Model of Cortical Ischemia in the Rat

Spontaneous and evoked potentials (EPs) were recorded with cross-cortical microelectrode arrays following partial occlusion of the MCA and ACA in urethane-anaesthetised rats. The control group received no occlusion, while the treatment group was injected with anti-stroke peptide Tat-NR2B9c 5min befo...

Full description

Bibliographic Details
Main Author: Srejic, Luka
Other Authors: Hutchison, William D.
Language:en_ca
Published: 2009
Subjects:
Rat
Online Access:http://hdl.handle.net/1807/17715
Description
Summary:Spontaneous and evoked potentials (EPs) were recorded with cross-cortical microelectrode arrays following partial occlusion of the MCA and ACA in urethane-anaesthetised rats. The control group received no occlusion, while the treatment group was injected with anti-stroke peptide Tat-NR2B9c 5min before ischemia. Spontaneous EEG power significantly decreased in the stroke-only group when compared to controls (p<0.001). A greater loss of EEG power was observed on anterior electrodes closer to the occluded area versus posterior contacts in stroke-only rats (p<0.05). The Tat-NR2B9c+stroke group lost significantly less power when compared to stroke-only animals (p<0.05). EP amplitude in the stroke-only group was significantly reduced following ischemia when compared to control and Tat-NR2B9c+stroke animals (p<0.001). Epileptiform discharges were observed in 8/10 untreated stroke rats and 3/5 stroke rats treated with Tat-NR2B9c. The characteristic features of spontaneous and evoked potentials validate this rat focal stroke model for in vivo testing of pharmacological agents.