Summary: | Durant els últims anys, el nostre grup s’ha centrat en l’estudi de models experimentals de formació de cartílag i ós amb l’objectiu d’entendre els paràmetres biomecànics i biològics que regulen la formació dels teixits que formen l’esquelet. En particular, resultats previs obtinguts en el nostre laboratori indiquen que quan els fibroblasts embrionaris de ratolí (de l’anglès, “mouse embryonic fibroblasts”, MEFs) es cultiven in vitro en el pèptid auto-ensamblable RAD16-I, emprant un sistema de cultiu tridimensional (3D), els MEFs són capaços d’adquirir una capacitat de diferenciació multipotencial, iniciant un procés espontani de diferenciació condrogènica. En aquesta tesis, es va estudiar amb més detall el procés amb l’objectiu d’entendre els possibles mecanismes moleculars que modulen el procés de diferenciació condrogènica d’aquestes cèl•lules. Per a tal efecte es va avaluar l’influencia que les propietats de la matriu poden tenir en el procés de diferenciació i la possible participació de gens involucrats en l’organització primerenca de teixits. De manera interesant, es va veure que només sota certes condicions mecàniques caracteritzades per una rigidesa de la matriu baixa (G’=0,1KPa), el sistema va ser capaç d’iniciar la diferenciació condrogènica, cosa que va semblar venir regulada per la balança entre l’inductor condrogènic BMP4 i el seu antagonista Noggin, d’una manera similar al que succeeix in vivo. Per una altra banda, en aquesta tesis es va descriure un model nou i simple en el qual es podrien estudiar in vitro els esdeveniments moleculars involucrats en la formació d’ós, a través del procés d’ossificació endocondral. Per a tal efecte, cultius tridimensionals de MEFs en procés de condrogènesis es van cocultivar amb cèl•lules endotelials. Aquestes noves condicions van permetre al sistema redirigir-se cap a una diferenciació osteogènica, provat per l’expressió del marcador hipertròfic col•lagen tipus X i la mineralització de la matriu en les zones d’interacció entre els MEFS i les cèl•lules endotelials. Tals resultat suggereixen un clar diàleg entre ambdós tipus cel•lulars. Finalment també es va descriure el desenvolupament d’un nou material per a diferents aplicacions en l’àmbit de l’enginyeria de teixits, format per la simple combinació del pèptid d’auto-assemblatge RAD16-I i el polisacàrid heparina. Es va observar que aquest material exhibia la unió i alliberació seqüencial del factor de creixement – amb domini d’unió de l’heparina – VEGF165. A part, el nou material va permetre la formació d’estructures tubulars en un cultiu 3D de cèl•lules endotelials. Aquests resultats suggereixen que aquest sistema podria promoure el desenvolupament d’un teixit vascularitzat i com a conseqüència, afavorir la regeneració d’un teixit fet malbé. Aquesta plataforma es podria emprar en diferents aplicacions de l’enginyeria de teixits fent servir molècules amb afinitat d’unió de l’heparina com el TGFβ-1, el qual és un conegut inductor condrogènic. === Nuestro grupo se ha centrado el en estudio de modelos experimentales de formación de cartílago y hueso con el objetivo de entender los parámetros biomecánicos y biológicos que regulan la formación de los tejidos que forman el esqueleto. En particular, resultados previos de nuestro laboratorio indican que cuando los fibroblastos embrionarios de ratón (del inglés, mouse embryonic fibroblasts , MEFs) se cultivaron in vitro en el péptido de auto-ensamblaje RAD16-I usando un sistema de cultivo tridimensional (3D), los MEFs adquirieron una capacidad de diferenciación multipotencial iniciando un proceso espontáneo de diferenciación condrogénica. En esta tesis, se estudió con más detalle el proceso con el objetivo de entender los posibles mecanismos moleculares que modulan el proceso de diferenciación condrogénica de estas células. Para ello se evaluó la influencia que las propiedades de la matriz ejercen en el proceso de diferenciación y la posible participación de genes involucrados en organización temprana de tejidos. De forma interesante, solamente bajo ciertas condiciones mecánicas, caracterizadas por la baja rigidez de la matriz (G’ ~ 0.1 kPa), el sistema inició la diferenciación condrogénica, la cual pareció ser regulada por el balance entre el inductor condrogénico BMP4 y su antagonista Noggin en una forma similar a la que ocurre in vivo.Además, en esta tesis se describió un nuevo y simple modelo en el cual se podrían estudiar in vitro los eventos moleculares involucrados en la formación de hueso a través del proceso de osificación endochondral. Para ello, cultivos 3D de MEFs experimentando condrogénesis fueron cocultivados con células endoteliales. De manera importante, en estas nuevas condiciones el sistema se redirigió hacia una diferenciación osteogénica probado por la expresión del marcador hipertrófico colágeno tipo X y la mineralización de la matriz en las zonas de interacción entre los MEFs y las células endoteliales, lo que sugiere un diálogo entre ambos tipos celulares. Finalmente, se describió el desarrollo de un nuevo biomaterial para aplicaciones en ingeniería de tejidos formado por la simple combinación del péptido de auto-ensamblaje RAD16-I y el polisacárido heparina. De forma interesante, este material exhibió la unión y liberación secuencial del factor de crecimiento- con dominio de unión de la heparina- VEGF165. Además, el nuevo material permitió la formación de estructuras tubulares en un cultivo 3D de células endoteliales. Estos resultados sugieren que este sistema podría promover el desarrollo de un tejido vascularizado y, como consecuencia, favorecer la regeneración en un tejido dañado. Esta plataforma podría ser usada en otras aplicaciones de ingeniería de tejidos usando moléculas con afinidad de unión de la heparina como el TGFβ-1, el cual es un conocido inductor condrogénico. === Our group is focused on experimental models of cartilage and bone development in order to understand the biomechanical and biological parameters that regulate skeletal tissue formation. Previous results in our laboratory indicated that when mouse embryonic fibroblasts (MEFs) were cultured in vitro in three-dimensional (3D) scaffolds based on the self-assembling peptide RAD16-I, cells acquired multipotential capacity and engaged in a spontaneous process of chondrogenic differentiation. This thesis focuses on understanding the possible molecular mechanisms modulating the default cartilaginous commitment of these cells. Thus, the influence of matrix properties on the differentiation process was evaluated as well as the potential participation of genes involved in early tissue organization. Interestingly, cells only underwent chondrogenic differentiation under certain mechanical conditions, characterized by low stiffness (G’ ~ 0.1 kPa). Similarly to in vivo processes, the mentioned differentiation appeared to be regulated by the balance on the expression of the chondrogenic inductor BMP4 and its antagonist Noggin.Moreover, a novel and simple model was described in which the molecular events involved in bone formation through endochondral ossification could be studied in vitro. For this purpose, co-cultures of endothelial cells with 3D cultures of MEFs undergoing chondrogenesis were developed. Importantly, cells committed to osteogenic lineage under these new conditions. The osteogenic differentiation was evidenced by the expression of the hypertrophic marker collagen type X and the presence of calcium mineralized matrix at the interface between MEFs and endothelial cells, which suggested a cross-talk between both cell types. Finally, a newly designed biomaterial for tissue engineering applications was developed by combining self-assembling peptide RAD16-I and polysaccharide heparin. Interestingly, this material exhibited sequential binding and delivery of the growth factor -containing heparin binding domain- VEGF165. The new material supported the development of tubular-like structures in a 3D culture system of endothelial cells. These results suggested that this system could promote the development of a vascularized tissue and, as a consequence, promote tissue regeneration in an injured tissue. This platform could be used in other tissue engineering applications using heparin-binding affinity molecules such as TGFβ-1, which is a well-known chondrogenic inductor.
|