Summary: | Cereals are the basis of the normal diet in most Mediterranean countries and it is estimated that they account for 35-50% of the regional populations’ dietary energy consumption. Water deficit is the main constraint limiting cereal productivity in the Mediterranean regions. Crop management and breeding may improve the performance of cereals under such stress conditions. However, the lack of efficient tools to monitor the performance of agronomical practices or to undertake appropriate phenotyping in breeding programs limits the efficiency of both avenues.
Novel tools to monitor the cereals (durum wheat and maize) performance in the thesis are:
1. Stable isotopes
In C3 plants the carbon isotope composition (δ13C) measured in plant tissues is considered as one of the most promising secondary traits in wheat (and other C3 cereals) when breeding for drought resilience. The δ13C has been reported to negatively correlate with Ci/Ca (the ratio of leaf intercellular to ambient CO2 concentration) and positively correlated with A/E (the ratio of net assimilation to water evaporated from the transpiring organs). Therefore, the δ13C is positively related to WUE, which is considered as the biomass produced per unit of water transpired. Correlations between δ13C and GY and/or aerial biomass (AB) may be either negative or positive according to the plant tissue sampled and environmental conditions tested. In the case of a C4 plant like maize, variations in the δ13C in response to water conditions are small in compared to C3 plants like wheat, but they are still adequate for use in maize as an indicator of water conditions during growth. The oxygen isotope composition (δ18O) of plant tissues is known to reflect the evaporative conditions throughout the crop cycle and thus it has been proposed as a proxy method for measuring transpiration as well as an indicator of genotypic differences in stomatal conductance (gs) in C3 and C4 plants.
2. Root traits
Plant roots are the key organs in the plant responsible for the absorption of water and nutrients. Concerning root traits, their response to drought stress is still a challenging subject for research. The laborious work required for the study of the root system has prevented the adoption of root characteristics as routinely phenotyping traits for crop breeding. The root weight density (RWD) and root length density (RLD) are frequently used in root studies to describe the root weight and root length, respectively, within a soil volume and they reflect the capacity of roots to extract water and nutrients. The specific root length (SRL) is considered another of the most important and commonly measured morphological traits. Previous studies showed that a high SRL facilitates nutrient uptake in low-nutrient environments and makes plants more competitive for soil nutrient uptake.
3. The use of proximal (remote) sensing
The assessment of AB is important for monitoring crop growth because it could reflect the effect of stresses on crop growth and senescence. Thus, a number of studies have revealed that spectral reflectance techniques have the potential to provide precise, non-destructive instantaneous quantitative estimates of AB. The Normalized Difference Vegetation Index (NDVI) has been used as an indicator of AB and GY in cereals. In recent years the use of digital Red-Green-Blue (RGB) images has been proposed as an alternative to develop vegetation indices that may replace spectroradiometrical based NDVI. The price, size, and the easy use of conventional digital cameras make them viable alternatives to assess AB and GY in cereals. A number of studies have used digital RGB imaging to measure different colour parameters such as: greenness; intensity of green, red and blue; and derived normalized indices from the green, red and blue bands. === Los cereales son la base de la dieta normal en la mayoría de los países del Mediterráneo y se estima que representan del 35 al 50 % del consumo de energía alimentaria de las poblaciones de la región. La falta de agua, a veces acompañada con una baja disponibilidad de nitrógeno, es el principal limitante de la productividad de los cereales en las regiones Mediterráneas. Una mejora genética y un manejo de cultivos más eficientes pueden mejorar el rendimiento de los cereales en estas condiciones de estrés. Sin embargo, la falta de herramientas eficaces para monitorear el estado fisiológico del cultivo, ya sea para su empleo en manejo agronómico, como herramientas de fenotipeado asociado a la mejora genética o incluso para la predicción del rendimiento limita la agricultura mediterránea. La composición en isótopos estables de carbono (δ13C) medida en los tejidos de la planta se considera como uno de los rasgos secundarios más prometedores del trigo (y otros cereales del C3 y C4) en la mejora genética para resistencia a la sequía. Las correlaciones entre la δ13C y el rendimiento en grano o la biomasa aérea pueden ser negativas o positivas debido las condiciones medioambientales del ensayo. Las raíces de las plantas son los órganos clave de la planta responsables de la absorción de agua y nutrientes. Cómo la arquitectura de la raíz responde a la sequía y que rasgos de las raíces son claves continúa siendo un área de investigación que no está cerrada. El laborioso trabajo requerido para el estudio del sistema radicular ha impedido determinar que rasgos de la raíz pueden emplearse como criterios de fenotipado en mejora genética de cultivos. La evaluación de la biomasa aérea es importante para monitorear el crecimiento del cultivo porque podría reflejar el efecto de las diferentes condiciones de estrés en el crecimiento y la senescencia del cultivo. Así, una serie de estudios han reportado que las técnicas de reflectancia espectral/ imágenes digitales rojo-verde-azul (RGB) tienen el potencial de facilitar una estimaciones cuantitativas, instantáneas, no destructivas y precisas de la biomasa aérea.
|