Summary: | Glycosylation is a posttranslational modification affecting the fast majority of cellular surfaces through glycolipids and glycoproteins. It has been estimated that over 80% of all proteins are glycosylated and that the glycans decorating the periphery of these molecules are fundamental for the biological function of the entity. Many of these functions have yet to be unraveled. As the modification is a secondary-gene event, it depends on the availability and activity of a set of glycosyltransferases, the availability of both donor and acceptor substrate (both in time and place), as well as many other factors that may include temperature, pH, etc. As a consequence a single glycosylation site may express a certain number of different glycans, i.e., structural microheterogeneity. The importance of glycosylation as primary mediators of cellular communication, protein-protein cross-talk, and even cell-pathogen interaction has been attributed precisely to this phenomenon.
In the past few years substantial advancements have been made in the understanding of the function of particular glycosidic epitopes, such as the most relevant blood group antigens ABO, and Sda, (sialyl)Lewisx,y,a,b, the HNK-1 antigen, etc., but many more structures have been identified without an attributed functionality, either as a stand-alone epitope or in conjunction with the underlying peptide structure. Similarly, a serious lack of knowledge still exists on the carbohydrate recognizing molecules, i.e. lectins and their function; even so they have been recognized over the last decades as decisive players in numerous biological processes, ranging from cell-cell communication, fertilization, pathogen-cell adhesion to metastasis. Both deficiencies are directly related to the absence of proper tools to elaborate well-defined carbohydrate epitopes for the study of their interaction characteristics and their employment in the discovery of new complementary molecules. Consequently, there is an increasing interest in finding powerful and nanosized tools to screen for these molecules and to study their carbohydrate interactions in detail.
In this Thesis, two complementary approaches are described to characterize lectin-carbohydrate interactions with high sensitivity, low sample consumption, and without the need for sample labeling: SPR and CREDEX-MS. In SPR, we have developed an approach where the sugar is immobilized onto a sensor surface through a tailor-made peptide module that allows (1) to capture the lectin, (2) to characterize the interaction through kinetic and thermodynamic parameters, and (3) to identify the interacted protein by mass spectrometry. In CREDEX-MS, based on proteolytic excision of protein-carbohydrate complexes and mass spectrometric analysis, the peptides conforming the carbohydrate binding domain are identified.
After completing a preliminary phase where the above mentioned methodologies are optimized and used for the study of carbohydrate-protein interactions using purified well-known lectins; the established platforms are employed to analyze carbohydrate-driven interactions in more complex systems. Specifically, SPR and CREDEX-MS techniques are applied in a research project on molecular aspects of reproduction with the main objective of disclosing the molecular elements that participate in the first steps of fertilization in bovine species, namely: formation of the sperm reservoir in the oviductal epithelium and gamete recognition (oocyte (ZP)-sperm interaction). === La glicosilació, el procés enzimàtic que uneix sacàrids per produir glicans que s'adhereixen a proteïnes, lípids o altres molècules biològiques, és una modificació co-traduccional i post-traduccional present a la pràctica totalitat de components cel•lulars, on trobem glicoproteïnes, glicolípids i altres glicoderivats. Pel que fa específicament a les proteïnes, s’estima que més d’un 80% estan glicosilades i que aquests glicans són fonamentals en processos biològics com la senyalització cel•lular, el cicle infecciós de certs patògens, les respostes inflamatòria i immune, la fertilització, etc.
En els últims anys s’ha avançat substancialment en el coneixement bàsic de la funció de determinats epítops o cadenes glicosídiques concretes. No obstant, es desconeixen les funcions de moltes altres estructures glicosídiques. D’altra banda, també existeix un cert desconeixement sobre les molècules que reconeixen els carbohidrats, les lectines “lectores del codi glicòmic”. Aquestes proteïnes es caracteritzen per reconèixer i unir-se de forma reversible i específica a certs monosacàrids o epítops oligosacàrids donant lloc a interaccions similars a les reaccions antigen-anticòs o enzim-substrat.
El paper de les lectines en processos com l'aglutinació i la definició de grups sanguinis, la inflamació (selectines), la mielinització del teixit nerviós, la progressió tumoral, etc., demostra la ubiqüitat i diversitat d'activitats en què es veuen implicades aquestes proteïnes. Per això, disposar d'una eina ràpida i fiable per al seu aïllament i identificació, previ a l'estudi de les seves interaccions amb polisacàrids, constitueix un objectiu de màxim interès en l'actual investigació biomèdica.
En la present Tesi Doctoral, es descriuen dues aproximacions complementàries mitjançant les quals es poden caracteritzar les interaccions lectina-carbohidrat amb gran sensibilitat, poca mostra i sense la necessitat de cap marcatge. En la tècnica de ressonància de plasmó superficial (SPR), el sucre és immobilitzat sobre una superfície a través d'un mòdul peptídic, la qual cosa permet (1) capturar la lectina, (2) caracteritzar la seva interacció mitjançant paràmetres cinètics i termodinàmics i (3) identificar posteriorment la proteïna mitjançant espectrometria de masses. Complementàriament, la tècnica CREDEX-MS, basada en l'excisió proteolítica del complex proteïna-sucre i posterior anàlisi per espectrometria de masses, ens permet identificar els pèptids que formen part del domini d'unió al sucre.
|