Correlated Stochastic Dynamics in Financial Markets.

Thesis investigates the dynamics of financial markets. Nowadays, this is one of the emergent fields in physics and requires a multidisciplinary approach. The thesis studies the first work made by the financial mathematicians and presents those in a more comprehensible form for a physicist. Option pr...

Full description

Bibliographic Details
Main Author: Perelló Palou, Josep
Other Authors: Masoliver Garcia, Jaume
Format: Doctoral Thesis
Language:English
Published: Universitat de Barcelona 2001
Subjects:
53
Online Access:http://hdl.handle.net/10803/1787
http://nbn-resolving.de/urn:isbn:846881153X
id ndltd-TDX_UB-oai-www.tdx.cat-10803-1787
record_format oai_dc
spelling ndltd-TDX_UB-oai-www.tdx.cat-10803-17872013-07-09T03:35:37ZCorrelated Stochastic Dynamics in Financial Markets.Perelló Palou, JosepMercats financersTeoria de Black-ScholesTeories matemàtiquesCiències Experimentals i Matemàtiques53Thesis investigates the dynamics of financial markets. Nowadays, this is one of the emergent fields in physics and requires a multidisciplinary approach. The thesis studies the first work made by the financial mathematicians and presents those in a more comprehensible form for a physicist. Option pricing is perhaps most complete problem. Until very recently, stochastic differential equations theory was solely applied to finance by mathematicians. The thesis reviews the theory of Black-Scholes and pays attention to questions that had not interested too much to the mathematicians but that are of importance from a physicist point of view. Among other things, thesis derives the so-called Black-Scholes option price following the rules used by physicists (Stratonovich). Mathematicians have been using Itô convention for deriving this price and thesis founds that both approaches are equivalent. Thesis also focus on the martingale option pricing which directly relates the stock probability density to the option price. The thesis optimizes the martingale method to implement it in cases where only the characteristic function is known. The study of the correlations observed in markets conform the second block of the thesis. Good knowledge of correlations is essential to perform predictions. In this sense, two diffusive models are presented. First model proposes a market described by a singular two-dimensional process driven by an Ornstein-Uhlenbeck process where noise source is Gaussian and white. The model correctly describes the volatility as a function of time by considering the memory effects in the stock price changes. This model gives reason of the market inefficiencies due to the absence of liquidity or any other type of market interties. These correlations appear to have a a long range persistence in the option price and entails a remarkable influence in the risk due to holding an option. The second model is a stochastic volatility model. In this case, prices are described by a two-dimensional process with two Gaussian white noise sources and where volatility follows an Ornstein-Uhlenbeck process. Their statistical properties are studied and these describe most of the empirical market properties such as the leverage effect.Universitat de BarcelonaMasoliver Garcia, JaumeUniversitat de Barcelona. Departament de Física Fonamental2001-12-20info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10803/1787urn:isbn:846881153XTDX (Tesis Doctorals en Xarxa)enginfo:eu-repo/semantics/openAccessADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Mercats financers
Teoria de Black-Scholes
Teories matemàtiques
Ciències Experimentals i Matemàtiques
53
spellingShingle Mercats financers
Teoria de Black-Scholes
Teories matemàtiques
Ciències Experimentals i Matemàtiques
53
Perelló Palou, Josep
Correlated Stochastic Dynamics in Financial Markets.
description Thesis investigates the dynamics of financial markets. Nowadays, this is one of the emergent fields in physics and requires a multidisciplinary approach. The thesis studies the first work made by the financial mathematicians and presents those in a more comprehensible form for a physicist. Option pricing is perhaps most complete problem. Until very recently, stochastic differential equations theory was solely applied to finance by mathematicians. The thesis reviews the theory of Black-Scholes and pays attention to questions that had not interested too much to the mathematicians but that are of importance from a physicist point of view. Among other things, thesis derives the so-called Black-Scholes option price following the rules used by physicists (Stratonovich). Mathematicians have been using Itô convention for deriving this price and thesis founds that both approaches are equivalent. Thesis also focus on the martingale option pricing which directly relates the stock probability density to the option price. The thesis optimizes the martingale method to implement it in cases where only the characteristic function is known. The study of the correlations observed in markets conform the second block of the thesis. Good knowledge of correlations is essential to perform predictions. In this sense, two diffusive models are presented. First model proposes a market described by a singular two-dimensional process driven by an Ornstein-Uhlenbeck process where noise source is Gaussian and white. The model correctly describes the volatility as a function of time by considering the memory effects in the stock price changes. This model gives reason of the market inefficiencies due to the absence of liquidity or any other type of market interties. These correlations appear to have a a long range persistence in the option price and entails a remarkable influence in the risk due to holding an option. The second model is a stochastic volatility model. In this case, prices are described by a two-dimensional process with two Gaussian white noise sources and where volatility follows an Ornstein-Uhlenbeck process. Their statistical properties are studied and these describe most of the empirical market properties such as the leverage effect.
author2 Masoliver Garcia, Jaume
author_facet Masoliver Garcia, Jaume
Perelló Palou, Josep
author Perelló Palou, Josep
author_sort Perelló Palou, Josep
title Correlated Stochastic Dynamics in Financial Markets.
title_short Correlated Stochastic Dynamics in Financial Markets.
title_full Correlated Stochastic Dynamics in Financial Markets.
title_fullStr Correlated Stochastic Dynamics in Financial Markets.
title_full_unstemmed Correlated Stochastic Dynamics in Financial Markets.
title_sort correlated stochastic dynamics in financial markets.
publisher Universitat de Barcelona
publishDate 2001
url http://hdl.handle.net/10803/1787
http://nbn-resolving.de/urn:isbn:846881153X
work_keys_str_mv AT perellopaloujosep correlatedstochasticdynamicsinfinancialmarkets
_version_ 1716591093616738304