Entanglement and Quantum Cryphtography

Quantum cryptography is one of the most important quantum information applications. The present thesis covers several topics on quantum cryptography, such as the security analysis of quantum channels for key distribution protocols and the study of quantum cloning.First, we introduce a general formal...

Full description

Bibliographic Details
Main Author: Bae, Joonwoo
Other Authors: Acín dal Maschio, Antonio
Format: Doctoral Thesis
Language:English
Published: Universitat de Barcelona 2007
Subjects:
Online Access:http://hdl.handle.net/10803/1589
http://nbn-resolving.de/urn:isbn:9788469069943
id ndltd-TDX_UB-oai-www.tdx.cat-10803-1589
record_format oai_dc
spelling ndltd-TDX_UB-oai-www.tdx.cat-10803-15892014-02-26T03:48:28ZEntanglement and Quantum CryphtographyBae, JoonwooCiències Experimentals i Matemàtiques53 - FísicaQuantum cryptography is one of the most important quantum information applications. The present thesis covers several topics on quantum cryptography, such as the security analysis of quantum channels for key distribution protocols and the study of quantum cloning.First, we introduce a general formalism to characterize the cryptographic properties of quantum channels in the realistic scenario where the two honest parties employ prepare and measure protocols and the known two-way communication reconciliation techniques. We derive a necessary and sufficient condition to distill a secret key using this type of schemes for arbitrary bipartite quantum systems of finite dimension. The obtained results suggest that there may exist weakly entangling channels useless for key distribution using prepare and measure schemes.Next, we consider Gaussian states and Gaussian operations for cryptographic tasks and derive a new security condition. As it happens for quantum systems of finite dimension, our results suggest that there may also exist weakly entangled Gaussian states useless for key distribution, using Gaussian operations. Finally, we study the connection between cloning and state estimation.It was a long-standing problem to show whether state estimation becomes equivalent to quantum cloning in the asymptotic limit of an infinite number of clones. The equivalence is proven here using two known results in quantum information theory, the monogamy of quantum states and the properties of entanglement-breaking channels.Universitat de BarcelonaAcín dal Maschio, AntonioLatorre, José IgnacioUniversitat de Barcelona. Departament d'Estructura i Constituents de la Matèria2007-04-12info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10803/1589urn:isbn:9788469069943TDX (Tesis Doctorals en Xarxa)engADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.info:eu-repo/semantics/openAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Ciències Experimentals i Matemàtiques
53 - Física
spellingShingle Ciències Experimentals i Matemàtiques
53 - Física
Bae, Joonwoo
Entanglement and Quantum Cryphtography
description Quantum cryptography is one of the most important quantum information applications. The present thesis covers several topics on quantum cryptography, such as the security analysis of quantum channels for key distribution protocols and the study of quantum cloning.First, we introduce a general formalism to characterize the cryptographic properties of quantum channels in the realistic scenario where the two honest parties employ prepare and measure protocols and the known two-way communication reconciliation techniques. We derive a necessary and sufficient condition to distill a secret key using this type of schemes for arbitrary bipartite quantum systems of finite dimension. The obtained results suggest that there may exist weakly entangling channels useless for key distribution using prepare and measure schemes.Next, we consider Gaussian states and Gaussian operations for cryptographic tasks and derive a new security condition. As it happens for quantum systems of finite dimension, our results suggest that there may also exist weakly entangled Gaussian states useless for key distribution, using Gaussian operations. Finally, we study the connection between cloning and state estimation.It was a long-standing problem to show whether state estimation becomes equivalent to quantum cloning in the asymptotic limit of an infinite number of clones. The equivalence is proven here using two known results in quantum information theory, the monogamy of quantum states and the properties of entanglement-breaking channels.
author2 Acín dal Maschio, Antonio
author_facet Acín dal Maschio, Antonio
Bae, Joonwoo
author Bae, Joonwoo
author_sort Bae, Joonwoo
title Entanglement and Quantum Cryphtography
title_short Entanglement and Quantum Cryphtography
title_full Entanglement and Quantum Cryphtography
title_fullStr Entanglement and Quantum Cryphtography
title_full_unstemmed Entanglement and Quantum Cryphtography
title_sort entanglement and quantum cryphtography
publisher Universitat de Barcelona
publishDate 2007
url http://hdl.handle.net/10803/1589
http://nbn-resolving.de/urn:isbn:9788469069943
work_keys_str_mv AT baejoonwoo entanglementandquantumcryphtography
_version_ 1716648729832849408