Transport of Components and Phases in a Surfactant/Foam

The transport of components and phases plays a fundamental role in the success of an EOR process. Because many reservoirs have harsh conditions of salinity, temperature and rock heterogeneity, which limit process options, a robust system with flexibility is required. Systematic experimental study of...

Full description

Bibliographic Details
Main Author: Lopez Salinas, Jose
Other Authors: Hirasaki, George J.
Format: Others
Language:English
Published: 2013
Subjects:
EOR
IFT
Online Access:http://hdl.handle.net/1911/71670
id ndltd-RICE-oai-scholarship.rice.edu-1911-71670
record_format oai_dc
spelling ndltd-RICE-oai-scholarship.rice.edu-1911-716702013-07-26T03:33:05ZTransport of Components and Phases in a Surfactant/FoamLopez Salinas, JoseEORFoamCarbonate reservoirAdsorptionFoam simulationDynamic adsorptionSurfactantsAnhydriteFractured reservoirImbibitionGravity drainagecapillary tubeswettabilityIFTThe transport of components and phases plays a fundamental role in the success of an EOR process. Because many reservoirs have harsh conditions of salinity, temperature and rock heterogeneity, which limit process options, a robust system with flexibility is required. Systematic experimental study of formulations capable to transport surfactant as foam at 94°C, formulated in sea water, is presented. It includes methodology to conduct core floods in sand packs using foaming surfactants and to develop “surfactant blend ratio- salinity ratio maps” using equilibrium phase behavior to determine favorable conditions for oil recovery in such floods. Mathematical model able to reproduce the foam strength behavior observed in sand packs with the formulations studied is presented. Visualization of oil recovery mechanism from matrix is realized using a model system of micro-channels surrounded by glass beads to mimic matrix and fractures respectively. The observations illustrate how components may distribute within the matrix, thereby releasing oil into the fractures. The use of chemicals to minimize adsorption is required when surfactant adsorption is important. The presence of anhydrite may limit the use of sodium carbonate to reduce adsorption of carbonates. A methodology is presented to estimate the amount, if any, of anhydrite present in the reservoir. The method is based on brine software analysis of produced water compositions and inductively coupled plasma (ICP) analysis of core samples. X-ray powder diffraction (XRD) was used to verify the mineralogy of the rock. X-ray photoelectron spectroscopy (XPS) was used to obtain surface composition for comparison with bulk composition of the rock. Adsorption of surfactants was measured using dynamic and static adsorption experiments. Determining the flow properties of the rock samples via tracer analysis permitted the simulation of the dynamic adsorption process using a mathematical model that considers the distribution of adsorbed materials in the three different regions of pore space. Using this method allows one to predict adsorption in a reservoir via simulation.Hirasaki, George J.Miller, Clarence A.2013-07-24T19:36:39Z2013-07-24T19:36:51Z2013-07-24T19:36:39Z2013-07-24T19:36:51Z2012-122013-07-24December 20122013-07-24T19:36:51Zthesistextapplication/pdfhttp://hdl.handle.net/1911/71670123456789/ETD-2012-12-277eng
collection NDLTD
language English
format Others
sources NDLTD
topic EOR
Foam
Carbonate reservoir
Adsorption
Foam simulation
Dynamic adsorption
Surfactants
Anhydrite
Fractured reservoir
Imbibition
Gravity drainage
capillary tubes
wettability
IFT
spellingShingle EOR
Foam
Carbonate reservoir
Adsorption
Foam simulation
Dynamic adsorption
Surfactants
Anhydrite
Fractured reservoir
Imbibition
Gravity drainage
capillary tubes
wettability
IFT
Lopez Salinas, Jose
Transport of Components and Phases in a Surfactant/Foam
description The transport of components and phases plays a fundamental role in the success of an EOR process. Because many reservoirs have harsh conditions of salinity, temperature and rock heterogeneity, which limit process options, a robust system with flexibility is required. Systematic experimental study of formulations capable to transport surfactant as foam at 94°C, formulated in sea water, is presented. It includes methodology to conduct core floods in sand packs using foaming surfactants and to develop “surfactant blend ratio- salinity ratio maps” using equilibrium phase behavior to determine favorable conditions for oil recovery in such floods. Mathematical model able to reproduce the foam strength behavior observed in sand packs with the formulations studied is presented. Visualization of oil recovery mechanism from matrix is realized using a model system of micro-channels surrounded by glass beads to mimic matrix and fractures respectively. The observations illustrate how components may distribute within the matrix, thereby releasing oil into the fractures. The use of chemicals to minimize adsorption is required when surfactant adsorption is important. The presence of anhydrite may limit the use of sodium carbonate to reduce adsorption of carbonates. A methodology is presented to estimate the amount, if any, of anhydrite present in the reservoir. The method is based on brine software analysis of produced water compositions and inductively coupled plasma (ICP) analysis of core samples. X-ray powder diffraction (XRD) was used to verify the mineralogy of the rock. X-ray photoelectron spectroscopy (XPS) was used to obtain surface composition for comparison with bulk composition of the rock. Adsorption of surfactants was measured using dynamic and static adsorption experiments. Determining the flow properties of the rock samples via tracer analysis permitted the simulation of the dynamic adsorption process using a mathematical model that considers the distribution of adsorbed materials in the three different regions of pore space. Using this method allows one to predict adsorption in a reservoir via simulation.
author2 Hirasaki, George J.
author_facet Hirasaki, George J.
Lopez Salinas, Jose
author Lopez Salinas, Jose
author_sort Lopez Salinas, Jose
title Transport of Components and Phases in a Surfactant/Foam
title_short Transport of Components and Phases in a Surfactant/Foam
title_full Transport of Components and Phases in a Surfactant/Foam
title_fullStr Transport of Components and Phases in a Surfactant/Foam
title_full_unstemmed Transport of Components and Phases in a Surfactant/Foam
title_sort transport of components and phases in a surfactant/foam
publishDate 2013
url http://hdl.handle.net/1911/71670
work_keys_str_mv AT lopezsalinasjose transportofcomponentsandphasesinasurfactantfoam
_version_ 1716594601605726208