Synthese von Metallnitrid- und Metalloxinitridnanopartikeln für energierelevante Anwendungen

Ein viel diskutiertes Thema unserer Zeit ist die Zukunft der Energiegewinnung und Speicherung. Dabei nimmt die Nanowissenschaft eine bedeutende Rolle ein; sie führt zu einer Effizienzsteigerung bei der Speicherung und Gewinnung durch bereits bekannte Materialien und durch neue Materialien. In diesem...

Full description

Bibliographic Details
Main Author: Milke, Bettina
Format: Doctoral Thesis
Language:German
Published: Universität Potsdam 2012
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60008
http://opus.kobv.de/ubp/volltexte/2012/6000/
Description
Summary:Ein viel diskutiertes Thema unserer Zeit ist die Zukunft der Energiegewinnung und Speicherung. Dabei nimmt die Nanowissenschaft eine bedeutende Rolle ein; sie führt zu einer Effizienzsteigerung bei der Speicherung und Gewinnung durch bereits bekannte Materialien und durch neue Materialien. In diesem Zusammenhang ist die Chemie Wegbereiter für Nanomaterialien. Allerdings führen bisher die meisten bekannten Synthesen von Nanopartikeln zu undefinierten Partikeln. Eine einfache, kostengünstige und sichere Synthese würde die Möglichkeit einer breiten Anwendung und Skalierbarkeit bieten. In dieser Arbeit soll daher die Darstellung der einfachen Synthese von Mangannitrid-, Aluminiumnitrid-, Lithiummangansilicat-, Zirkonium-oxinitrid- und Mangancarbonatnanopartikel betrachtet werden. Dabei werden die sogenannte Harnstoff-Glas-Route als eine Festphasensynthese und die Solvothermalsynthese als typische Flüssigphasensynthese eingesetzt. Beide Synthesewege führen zu definierten Partikelgrößen und interessanten Morphologien und ermöglichen eine Einflussnahme auf die Produkte. Im Falle der Synthese der Mangannitridnanopartikel mithilfe der Harnstoff-Glas-Route führt diese zu Nanopartikeln mit Kern-Hülle-Struktur, deren Einsatz als Konversionsmaterial erstmalig vorgestellt wird. Mit dem Ziel einer leichteren Anwendung von Nanopartikeln wird eine einfache Beschichtung von Oberflächen mit Nanopartikeln mithilfe der Rotationsbeschichtung beschrieben. Es entstand ein Gemisch aus MnN0,43/MnO-Nanopartikeln, eingebettet in einem Kohlenstofffilm, dessen Untersuchung als Konversionsmaterial hohe spezifische Kapazitäten (811 mAh/g) zeigt, die die von dem konventionellen Anodenmaterial Graphit (372 mAh/g) übersteigt. Neben der Synthese des Anodenmaterials wurde ebenfalls die des Kathodenmaterials Li2MnSiO4-Nanopartikeln mithilfe der Harnstoff-Glas-Route vorgestellt. Mithilfe der Synthese von Zirkoniumoxinitridnanopartikeln Zr2ON2 kann eine einfache Einflussnahme auf das gewünschte Produkt durch die Variation derReaktionsbedingungen, wie Harnstoffmenge oder Reaktionstemperatur, bei der Harnstoff-Glas-Route demonstriert werden. Der Zusatz von kleinsten Mengen an Ammoniumchlorid vermeidet, dass sich Kohlenstoff im Endprodukt bildet und führt so zu gelben Zr2ON2-Nanopartikeln mit einer Größe d = 8 nm, die Halbleitereigen-schaften besitzen. Die Synthese von Aluminiumnitridnanopartikeln führt zu kristallinen Nanopartikeln, die in eine amorphe Matrix eingebettet sind. Die Solvothermalsynthese von Mangancarbonatnanopartikel lässt neue Morphologien in Form von Nanostäbchen entstehen, die zu schuppenartigen sphärischen Überstrukturen agglomeriert sind. === The development of new methods toward alternative clean energy production and efficient energy storage is a hot topic nowadays. In this context nanoscience has an important role to find suitable ways of increasing the efficiency of storage and production of energy of already known materials and new materials. However, until now the most well-known syntheses of MnN0,43 and Zr2ON2 nanoparticles lead to undefined particles. A simple, cheap and safe synthesis would offer the possibility of broader applications and scalability. We herein present the so-called urea-glass route which is used as a sol-gel process. This synthetic route leads to well-defined particle sizes, novel particle morphologies and allows the tailoring of the desired products. In the case of the synthesis of manganese nitride nanoparticles (MnN0,43), nanoparticles with a core-shell structure are obtained, their use as conversion materials in batteries is first introduced. On the other hand, the formation of zirconium oxynitride nanoparticles (Zr2ON2) can be easily influenced by varying the reaction conditions such as the amount of urea or the reaction temperature. The addition of small amounts of salt prevents the formation of carbon in the final product, leading to yellow Zr2ON2 nanoparticles with a size of d = 8 nm which show semiconductor behavior.