Crustal deformation source monitoring using advanced InSAR time series and time dependent inverse modeling

Crustal deformation can be the result of volcanic and tectonic activity such as fault dislocation and magma intrusion. The crustal deformation may precede and/or succeed the earthquake occurrence and eruption. Mitigating the associated hazard, continuous monitoring of the crustal deformation accordi...

Full description

Bibliographic Details
Main Author: Shirzaei, Manoochehr
Format: Doctoral Thesis
Language:English
Published: Universität Potsdam 2010
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50774
http://opus.kobv.de/ubp/volltexte/2011/5077/
Description
Summary:Crustal deformation can be the result of volcanic and tectonic activity such as fault dislocation and magma intrusion. The crustal deformation may precede and/or succeed the earthquake occurrence and eruption. Mitigating the associated hazard, continuous monitoring of the crustal deformation accordingly has become an important task for geo-observatories and fast response systems. Due to highly non-linear behavior of the crustal deformation fields in time and space, which are not always measurable using conventional geodetic methods (e.g., Leveling), innovative techniques of monitoring and analysis are required. In this thesis I describe novel methods to improve the ability for precise and accurate mapping the spatiotemporal surface deformation field using multi acquisitions of satellite radar data. Furthermore, to better understand the source of such spatiotemporal deformation fields, I present novel static and time dependent model inversion approaches. Almost any interferograms include areas where the signal decorrelates and is distorted by atmospheric delay. In this thesis I detail new analysis methods to reduce the limitations of conventional InSAR, by combining the benefits of advanced InSAR methods such as the permanent scatterer InSAR (PSI) and the small baseline subsets (SBAS) with a wavelet based data filtering scheme. This novel InSAR time series methodology is applied, for instance, to monitor the non-linear deformation processes at Hawaii Island. The radar phase change at Hawaii is found to be due to intrusions, eruptions, earthquakes and flank movement processes and superimposed by significant environmental artifacts (e.g., atmospheric). The deformation field, I obtained using the new InSAR analysis method, is in good agreement with continuous GPS data. This provides an accurate spatiotemporal deformation field at Hawaii, which allows time dependent source modeling. Conventional source modeling methods usually deal with static deformation field, while retrieving the dynamics of the source requires more sophisticated time dependent optimization approaches. This problem I address by combining Monte Carlo based optimization approaches with a Kalman Filter, which provides the model parameters of the deformation source consistent in time. I found there are numerous deformation sources at Hawaii Island which are spatiotemporally interacting, such as volcano inflation is associated to changes in the rifting behavior, and temporally linked to silent earthquakes. I applied these new methods to other tectonic and volcanic terrains, most of which revealing the importance of associated or coupled deformation sources. The findings are 1) the relation between deep and shallow hydrothermal and magmatic sources underneath the Campi Flegrei volcano, 2) gravity-driven deformation at Damavand volcano, 3) fault interaction associated with the 2010 Haiti earthquake, 4) independent block wise flank motion at the Hilina Fault system, Kilauea, and 5) interaction between salt diapir and the 2005 Qeshm earthquake in southern Iran. This thesis, written in cumulative form including 9 manuscripts published or under review in peer reviewed journals, improves the techniques for InSAR time series analysis and source modeling and shows the mutual dependence between adjacent deformation sources. These findings allow more realistic estimation of the hazard associated with complex volcanic and tectonic systems. === Oberflächendeformationen können eine Folge von vulkanischen und tektonischen Aktivitäten sein, wie etwa Plattenverschiebungen oder Magmaintrusion. Die Deformation der Erdkruste kann einem Erdbeben oder einem Vulkanausbruch vorausgehen und/oder folgen. Um damit drohende Gefahren für den Menschen zu verringern, ist die kontinuierliche Beobachtung von Krustendeformationen eine wichtige Aufgabe für Erdobservatorien und Fast-Responce-Systems geworden. Auf Grund des starken nicht-linearen Verhaltens von Oberflächendeformationsgebiet in Zeit und Raum, die mit konventionellen Methoden nicht immer erfasst werden (z.B., Nivellements), sind innovative Beobachtungs- und Analysetechniken erforderlich. In dieser Dissertation beschreibe ich Methoden, welche durch Mehrfachbeobachtungen der Erdoberfläche nit satellitengestützem Radar eine präzise und akkurate Abbildung der raumzeitlichen Oberflächendeformationen ermöglichen. Um die Bildung und Entwicklung von solchen raumzeitlichen Deformationsgebieten besser zu verstehen, zeige ich weiterhin neuartige Ansätze zur statischen und zeitabhängigen Modellinversion. Radar-Interferogramme weisen häufig Gebiete auf, in denen das Phasensignal dekorreliert und durch atmosphärische Laufzeitverzögerung verzerrt ist. In dieser Arbeit beschreibe ich wie Probleme des konventionellen InSAR überwunden werden können, indem fortgeschrittene InSAR-Methoden, wie das Permanent Scatterer InSAR (PSI) und Small Baseline Subsets (SBAS), mit einer Wavelet-basierten Datenfilterung verknüpft werden. Diese neuartige Analyse von InSAR Zeitreihen wird angewendet, um zum Beispiel nicht-lineare Deformationsprozesse auf Hawaii zu überwachen. Radar-Phasenänderungen, gemessen auf der Pazifikinsel, beruhen auf Magmaintrusion, Vulkaneruption, Erdbeben und Flankenbewegungsprozessen, welche durch signifikante Artefakte (z.B. atmosphärische) überlagert werden. Mit Hilfe der neuen InSAR-Analyse wurde ein Deformationsgebiet ermittelt, welches eine gute Übereinstimmung mit kontinuierlich gemessenen GPS-Daten aufweist. Auf der Grundlage eines solchen, mit hoher Genauigkeit gemessenen, raumzeitlichen Deformationsgebiets wird für Hawaii eine zeitabhängige Modellierung der Deformationsquelle ermöglicht. Konventionelle Methoden zur Modellierung von Deformationsquellen arbeiten normalerweise mit statischen Daten der Deformationsgebiete. Doch um die Dynamik einer Deformationsquelle zu untersuchen, sind hoch entwickelte zeitabhängige Optimierungsansätze notwendig. Dieses Problem bin ich durch eine Kombination von Monte-Carlo-basierten Optimierungsansätzen mit Kalman-Filtern angegangen, womit zeitlich konsistente Modellparameter der Deformationquelle gefunden werden. Ich fand auf der Insel Hawaii mehrere, raumzeitlich interagierende Deformationsquellen, etwa Vulkaninflation verknüpft mit Kluftbildungen und Veränderungen in bestehenden Klüften sowie zeitliche Korrelationen mit stillen Erdbeben. Ich wendete die neuen Methoden auf weitere tektonisch und vulkanisch aktive Gebiete an, wo häufig die eine Interaktion der Deformationsquellen nachgewiesen werden konnte und ihrer bedeutung untersucht wurde. Die untersuchten Gebiete und Deformationsquellen sind 1) tiefe und oberflächliche hydrothermale und magmatische Quellen unterhalb des Campi Flegrei Vulkans, 2) gravitationsbedingte Deformationen am Damawand Vulkan, 3) Störungsdynamik in Verbindung mit dem Haiti Beben im Jahr 2010, 4) unabhängige blockweise Flankenbewegung an der Hilina Störungszone, und 5) der Einfluss eines Salzdiapirs auf das Qeshm Erdbeben im Süd-Iran im Jahr 2005. Diese Dissertation, geschrieben als kumulative Arbeit von neun Manuskripten, welche entweder veröffentlicht oder derzeit in Begutachtung bei ‘peer-review’ Zeitschriften sind, technische Verbesserungen zur Analyse von InSAR Zeitreihen vor sowie zur Modellierung von Deformationsquellen. Sie zeigt die gegenseitige Beeinflussung von benachbarten Deformationsquellen, und sie ermöglicht, realistischere Einschätzungen von Naturgefahren, die von komplexen vulkanischen und tektonischen Systemen ausgehen.