Learning under differing training and test distributions
One of the main problems in machine learning is to train a predictive model from training data and to make predictions on test data. Most predictive models are constructed under the assumption that the training data is governed by the exact same distribution which the model will later be exposed to....
Main Author: | Bickel, Steffen |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Universität Potsdam
2008
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33331 http://opus.kobv.de/ubp/volltexte/2009/3333/ |
Similar Items
-
Wissen gewinnen und gewinnen durch Wissen
by: Fent, Thomas
Published: (2000) -
Beherrschbares Online-Lernen durch inkrementelle, lokale Regularisierung
by: Rosemann, Nils
Published: (2013) -
Automatisierte Verfahren für die
Themenanalyse nachrichtenorientierter
Textquellen
by: Niekler, Andreas
Published: (2016) -
A Mixed Ensemble Approach for the Semi-Supervised Problem
by: Dimitriadou, Evgenia, et al.
Published: (2002) -
Einsatz und Gestaltung von digitalen Technologien und Medien in der Schule.
by: Cornelia Zobl
Published: (2020-04-01)