Metabolismus von alkylierten polyzyklischen aromatischen Kohlenwasserstoffen : Einfluss der Struktur auf benzylische Hydroxylierung und Sulfonierung in vitro und Modulation des Metabolismus in vivo

Die Toxizität und Kanzerogenität von rein aromatischen polyzyklischen aromatischen Kohlenwasserstoffen (PAK) ist seit Jahrzehnten bekannt und umfassend erforscht. Die alkylierten PAK (alkPAK) besitzen jedoch aufgrund ihrer Alkylgruppe eine weitere Möglichkeit zur Bioaktivierung und müssen daher geso...

Full description

Bibliographic Details
Main Author: Batke, Monika
Format: Doctoral Thesis
Language:German
Published: Universität Potsdam 2008
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26939
http://opus.kobv.de/ubp/volltexte/2008/2693/
Description
Summary:Die Toxizität und Kanzerogenität von rein aromatischen polyzyklischen aromatischen Kohlenwasserstoffen (PAK) ist seit Jahrzehnten bekannt und umfassend erforscht. Die alkylierten PAK (alkPAK) besitzen jedoch aufgrund ihrer Alkylgruppe eine weitere Möglichkeit zur Bioaktivierung und müssen daher gesondert betrachtet werden. Die Alkylgruppe wird zunächst hydroxyliert, anschließend zur Säure oxidiert oder direkt konjugiert. Entstehen hierbei instabile benzylische Sulfokonjugate, so können diese DNA-Addukte bilden und zu Mutationen führen. In Hinblick auf die Bioaktivierung von alkPAK galt es daher zu klären welchen Einfluss die Struktur auf die benzylische Hydroxylierung hat und welche humanen Formen der löslichen Sulfotransferasen besonders an der Umsetzung der alkPAK-Derivate beteiligt sind. Die Untersuchung der Albuminbindung von Schwefelsäureestern sowie ihre Aufnahme in Nierenzellen sollten Aufschluss hinsichtlich möglicher Transportvorgänge geben. Für die in-vivo-Situation wurde weiterhin die Modulation des Metabolismus ausgewählter benzylischer Alkohole durch verschiedene Nahrungsmittelbestandteile, Arzneimittel und Fremdstoffe an Ratten untersucht. Als Biomarker wurden benzylische Carbonsäuren im Urin und die entsprechenden Mercaptursäuren in Urin und Fäzes betrachtet. Zunächst wurde anhand von Inkubationen mit Rattenlebermikrosomen festgestellt, dass insbesondere größere Ringsystemen wie etwa alkylierte Benzo[a]pyrene im Gegensatz zu Methylpyrenen in wesentlich geringerem Umfang zum benzylischen Alkohol umgesetzt werden. Dies wurde auch in Untersuchungen mit humanen Lebermikrosomen bestätigt. Untersuchungen an einzelnen humanen Cytochromen P450 zeigten, dass insbesondere die durch PAK induzierbaren Formen hCYP1A1 und 1B1 hohe Umsatzraten aufwiesen. Die hepatisch exprimierten Formen hCYP1A2 und 3A4 waren jedoch auch zur Bildung der benzylischen Alkohole in der Lage. Für die anschließende Sulfonierung der benzylischen Alkohole wurden besonders hohe Aktivitäten mit den humanen Sulfotransferasen hSULT1A1, 1A2, 1C2 und 1E1 festgestellt. Aufgrund der Enzymexpression und der guten Durchblutung, die eine gute Substratversorgung ermöglicht, ist die Leber als Hauptort der benzylischen Hydroxylierung und Sulfonierung anzusehen. Ergebnisse unserer Arbeitsgruppe zeigen jedoch, dass nach 1-Hydroxymethylpyren-Applikation bei Ratten die Niere die höchste Zahl an DNA-Addukten aufweist. Wegen der Fokussierung der Sulfonierung auf die Leber ist die systemische Verteilung der Schwefelsäureester die einzig plausible Erklärung. So wurde im Rahmen dieser Arbeit eine hochaffine Bindungsstelle für 2-Sulfoxymethylpyren an Albumin beschrieben und die Aufnahme von benzylischen Sulfaten durch die humanen organischen Anionentransporter hOAT1, 3 und 4 in Nierenzellen in vitro gezeigt. Für die in-vivo-Situation wurde der Einfluss von Ethanol, 4-Methylpyrazol, Pentachlorphenol, Quercetin und Disulfiram untersucht. Neben der durch die Detoxifizierung mittels Alkoholdehydrogenase und Aldehyddehydrogenase entstandenen benzylischen Carbonsäure kann als Biomarker die entsprechende Mercaptursäure herangezogen werden. Sie ist ein indirekter Nachweis für die reaktiven und toxischen benzylischen Sulfate der alkPAK. Für die beiden im Tierversuch eingesetzten benzylischen Alkohole (1-Hydroxymethylpyren und 1-Hydroxymethyl-8-methylpyren) konnte sie in Urin und Fäzes nachgewiesen werden. Es wurde jedoch ein deutlicher Unterschied in der gebildeten Menge sowie der Verteilung zwischen Urin und Fäzes für die beiden Mercaptursäuren festgestellt. Hierfür sind wahrscheinlich Unterschiede im Transport der benzylischen Schwefelsäureester sowie der Spezifität der an der Mercaptursäurebildung beteiligten Enzyme verantwortlich. In diesem Zusammenhang konnte gezeigt werden, dass der humane organische Anionentransporter hOAT1 1,8-Dimethylpyrenmercaptursäure nicht und der hOAT3 nur mit niedrigen Umsatzraten transportiert. Bei den Modulatoren zeigte die Gabe der kompetitiven Alkoholdehydrogenase-Hemmstoffe Ethanol und 4-Methylpyrazol die Bedeutung der Alkoholdehydrogenasen für die Entgiftung der benzylischen Alkohole: Die Oxidation zur entsprechenden Carbonsäure war reduziert und die Bildung der Mercaptursäure erhöht. Eine Hemmung der Toxifizierung vermittelt durch Sulfotransferase-Inhibitoren konnte nur für Pentachlorphenol beim Metabolismus des 1-Hydroxymethylpyrens beobachtet werden. Gleichzeitig erwies sich Pentachlorphenol als kompetitiver Alkoholdehydrogenase-Inhibitor, da eine signifikant geminderte Carbonsäureausscheidung zu beobachten war. Bei 1-Hydroxymethyl-8-methylpyren traten diese Effekte nicht auf. Die unterschiedlichen bzw. unterschiedlich starken Effekte der Modulatoren beim Metabolismus der verschiedenen benzylischen Alkohole bestätigen die Beobachtungen aus den in-vitro-Untersuchungen, dass unterschiedliche Enzym- und Transporteraffinitäten und –aktivitäten vorliegen. === The toxicity and carcinogenicity of purely aromatic polycyclic aromatic hydrocarbons (PAH) is known since decades and has been thoroughly investigated. Compared to the purely aromatic PAH the alcylated PAH (alcPAH) can additionally be biologically activated because of their alcyl group. The alcyl group is hydroxylated and subsequently oxidised to the corresponding acid or conjugated. If unstable benzylic sulfoconjugates arrise from this bioactivation DNA adducts may be formed and could induce mutations. Concering the bioactivation of alcPAH this work should help to get to know which influence the structure has on the benzylic hydroxylation and it should be clarified which forms of human soluble sulfotransferases catalyse the sulfonation of benzylic alcohols. Furthermore the albumin binding of sulfuric acid esters and the uptake into kidney cells by human organic anion transporters in vitro have been analysed to get inside into transport processes. For the in vivo situation the modulation of enzyme activities by food compounds, pharmaceuticals and xenobiotics is of interest. As biomarkers the respective benzylic carboxylic acid and mercapturic acid were measured in urine only and feces. By the use of incubations with rat liver microsomes it turned out that larger ring systems were benzylically hydroxylated to a remarkable less extent then alcyl pyrenes. This observation was also made for human liver microsomes. In vitro experiments addressing the activity of single human cytochromes P450 revealed that PAH inducable forms hCYP1A1 and 1B1 had highest hydroxylation rates, but also the hepatically expressed forms hCYP3A4 and CYP1A2 catalysed the benzylic hydroxylation. The subsequently following sulfonation of the benzylic alcohols was found to be catalysed with high formation rates by human sulfotransferase hSULT1A1, 1A2, 1C2 and 1E1. Due to the enzyme expression and the high blood circluation ensuring the substrate supply it can be assumed that liver is the main organ for benzylic hydroxylation and sulfonation. Nevertheless results from our group showed that after 1-hydroxy methyl pyrene exposure, rats had higher levels of DNA adducts in kidneys than in liver. Thus, it has to be assumed that the sulfuric acid esters are systemically distributed. In the course of this work a high affinity albumin binding site for 2-sulfoxy methyl pyrene was identified and the uptake of sulfuric acid esters mediated by human organic anion tranporter 1, 3 and 4 to kidneys cells in vitro was shown. For the further estimation of the in vivo bioactivation of alcPAH the modulation of enzyme activities by ethanol, 4-methylpyrazole, quercetin, pentachlorophenol and disulfiram was explored. The carboxylic acids formed via alcohol dehydrogenase and aldehyde dehydrogenase were used as biomarkers as well as the respective mercapturic acids. The occurence of the mercapturic acids is an indirect proof for the reactive and toxic benzylic sulfo conjugates. In the urine and fecal samples of rats treated with either 1-hydroxymethyl pyrene or 1-hydroxymethyl 8-methyl pyrene the corresponding mercapturic acids of the sulfuric acid esters were found. Even though the absolute amount excreted and the distribution in urine and fecal samples were quite different. This observation may be explained by differences in transport of the sulfuric acid esters as well as by different specificities of the enzymes responsable for mercapturic acid formation. Additionally it was shown that the human organic anion transporter 1 does not transport 1,8-dimethyl pyrenyl mercapturic acid and the human organic anion transporter 3 only with very little turnover. Whereas 1-methyl pyrenyl mercapturic acid was well transported by both of these proteins. With regard to the modulation the concurrent application of ethanol or 4-methyl pyrazole to rats revealed the important role of alcohol dehydrogenase for the detoxification of benzylic alcohols: The oxidation leading to the corresponding carboxylic acid was remarkably reduced and the excretion of the mercapturic acid via urine and feces was enhanced. In order to observe an inhibition of sulfotransferases pentachlorophenol and quercetine were concurrently applied to rats. An inhibitory effect by the means of an reduced excretion of mercapturic acid was only observed for pentachlorophenol in animals treated with 1-hydroxymethyl pyrene. In addition it turned out, that pentachlorophenol was a potent competitive alcohol dehydrogenase inhibitor as the renal excretion of the corresponding carboxylic acid was remarkably reduced. For 1-hydroxymethyl 8-methyl pyrene this modulation was not observed. These differences in effects and strenght of effects may be ascribed to different enzymatic and transport affinities and activities which have already been observed in in vitro experiments.