Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators

Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth...

Full description

Bibliographic Details
Main Authors: Nazaikinskii, Vladimir, Savin, Anton, Schulze, Bert-Wolfgang, Sternin, Boris
Format: Others
Language:English
Published: Universität Potsdam 2003
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26587
http://opus.kobv.de/ubp/volltexte/2008/2658/
id ndltd-Potsdam-oai-kobv.de-opus-ubp-2658
record_format oai_dc
spelling ndltd-Potsdam-oai-kobv.de-opus-ubp-26582013-01-08T00:55:06Z Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators Nazaikinskii, Vladimir Savin, Anton Schulze, Bert-Wolfgang Sternin, Boris Mathematics Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth Manifolds 4.2.1. Definition of pseudodifferential operators on a manifold 4.2.2. Hörmander’s definition of pseudodifferential operators 4.2.3. Basic properties of pseudodifferential operators 4.3. Pseudodifferential Operators in Sections of Hilbert Bundles 4.3.1. Hilbert bundles 4.3.2. Operator-valued symbols. Specific features of the infinite-dimensional case 4.3.3. Symbols of compact fiber variation 4.3.4. Definition of pseudodifferential operators 4.3.5. The composition theorem 4.3.6. Ellipticity 4.3.7. The finiteness theorem 4.4. The Index Theorem 4.4.1. The Atiyah–Singer index theorem 4.4.2. The index theorem for pseudodifferential operators in sections of Hilbert bundles 4.4.3. Proof of the index theorem 4.5. Bibliographical Remarks Universität Potsdam Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik 2003 Preprint application/pdf urn:nbn:de:kobv:517-opus-26587 http://opus.kobv.de/ubp/volltexte/2008/2658/ eng http://opus.kobv.de/ubp/doku/urheberrecht.php
collection NDLTD
language English
format Others
sources NDLTD
topic Mathematics
spellingShingle Mathematics
Nazaikinskii, Vladimir
Savin, Anton
Schulze, Bert-Wolfgang
Sternin, Boris
Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators
description Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth Manifolds 4.2.1. Definition of pseudodifferential operators on a manifold 4.2.2. Hörmander’s definition of pseudodifferential operators 4.2.3. Basic properties of pseudodifferential operators 4.3. Pseudodifferential Operators in Sections of Hilbert Bundles 4.3.1. Hilbert bundles 4.3.2. Operator-valued symbols. Specific features of the infinite-dimensional case 4.3.3. Symbols of compact fiber variation 4.3.4. Definition of pseudodifferential operators 4.3.5. The composition theorem 4.3.6. Ellipticity 4.3.7. The finiteness theorem 4.4. The Index Theorem 4.4.1. The Atiyah–Singer index theorem 4.4.2. The index theorem for pseudodifferential operators in sections of Hilbert bundles 4.4.3. Proof of the index theorem 4.5. Bibliographical Remarks
author Nazaikinskii, Vladimir
Savin, Anton
Schulze, Bert-Wolfgang
Sternin, Boris
author_facet Nazaikinskii, Vladimir
Savin, Anton
Schulze, Bert-Wolfgang
Sternin, Boris
author_sort Nazaikinskii, Vladimir
title Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators
title_short Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators
title_full Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators
title_fullStr Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators
title_full_unstemmed Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators
title_sort differential operators on manifolds with singularities : analysis and topology : chapter 4: pseudodifferential operators
publisher Universität Potsdam
publishDate 2003
url http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26587
http://opus.kobv.de/ubp/volltexte/2008/2658/
work_keys_str_mv AT nazaikinskiivladimir differentialoperatorsonmanifoldswithsingularitiesanalysisandtopologychapter4pseudodifferentialoperators
AT savinanton differentialoperatorsonmanifoldswithsingularitiesanalysisandtopologychapter4pseudodifferentialoperators
AT schulzebertwolfgang differentialoperatorsonmanifoldswithsingularitiesanalysisandtopologychapter4pseudodifferentialoperators
AT sterninboris differentialoperatorsonmanifoldswithsingularitiesanalysisandtopologychapter4pseudodifferentialoperators
_version_ 1716501722463993856