A fixed point formula in one complex variable

We show a Lefschetz fixed point formula for holomorphic functions in a bounded domain D with smooth boundary in the complex plane. To introduce the Lefschetz number for a holomorphic map of D, we make use of the Bergman kernal of this domain. The Lefschetz number is proved to be the sum of usual con...

Full description

Bibliographic Details
Main Author: Tarkhanov, Nikolai
Format: Others
Language:English
Published: Universität Potsdam 2003
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26495
http://opus.kobv.de/ubp/volltexte/2008/2649/
id ndltd-Potsdam-oai-kobv.de-opus-ubp-2649
record_format oai_dc
spelling ndltd-Potsdam-oai-kobv.de-opus-ubp-26492013-01-08T00:55:06Z A fixed point formula in one complex variable Tarkhanov, Nikolai Mathematics We show a Lefschetz fixed point formula for holomorphic functions in a bounded domain D with smooth boundary in the complex plane. To introduce the Lefschetz number for a holomorphic map of D, we make use of the Bergman kernal of this domain. The Lefschetz number is proved to be the sum of usual contributions of fixed points of the map in D and contributions of boundary fixed points, these latter being different for attracting and repulsing fixed points. Universität Potsdam Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik 2003 Preprint application/pdf urn:nbn:de:kobv:517-opus-26495 http://opus.kobv.de/ubp/volltexte/2008/2649/ eng http://opus.kobv.de/ubp/doku/urheberrecht.php
collection NDLTD
language English
format Others
sources NDLTD
topic Mathematics
spellingShingle Mathematics
Tarkhanov, Nikolai
A fixed point formula in one complex variable
description We show a Lefschetz fixed point formula for holomorphic functions in a bounded domain D with smooth boundary in the complex plane. To introduce the Lefschetz number for a holomorphic map of D, we make use of the Bergman kernal of this domain. The Lefschetz number is proved to be the sum of usual contributions of fixed points of the map in D and contributions of boundary fixed points, these latter being different for attracting and repulsing fixed points.
author Tarkhanov, Nikolai
author_facet Tarkhanov, Nikolai
author_sort Tarkhanov, Nikolai
title A fixed point formula in one complex variable
title_short A fixed point formula in one complex variable
title_full A fixed point formula in one complex variable
title_fullStr A fixed point formula in one complex variable
title_full_unstemmed A fixed point formula in one complex variable
title_sort fixed point formula in one complex variable
publisher Universität Potsdam
publishDate 2003
url http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26495
http://opus.kobv.de/ubp/volltexte/2008/2649/
work_keys_str_mv AT tarkhanovnikolai afixedpointformulainonecomplexvariable
AT tarkhanovnikolai fixedpointformulainonecomplexvariable
_version_ 1716501719171465216