On the calculus of pseudodifferential operators with an anisotropic analytic parameter

We introduce the Volterra calculus of pseudodifferential operators with an anisotropic analytic parameter based on "twisted" operator-valued Volterra symbols. We establish the properties of the symbolic and operational calculi, and we give and make use of explicit oscillatory integral form...

Full description

Bibliographic Details
Main Author: Krainer, Thomas
Format: Others
Language:English
Published: Universität Potsdam 2002
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26200
http://opus.kobv.de/ubp/volltexte/2008/2620/
id ndltd-Potsdam-oai-kobv.de-opus-ubp-2620
record_format oai_dc
spelling ndltd-Potsdam-oai-kobv.de-opus-ubp-26202013-01-08T00:54:59Z On the calculus of pseudodifferential operators with an anisotropic analytic parameter Krainer, Thomas Mathematics We introduce the Volterra calculus of pseudodifferential operators with an anisotropic analytic parameter based on "twisted" operator-valued Volterra symbols. We establish the properties of the symbolic and operational calculi, and we give and make use of explicit oscillatory integral formulas on the symbolic side. In particular, we investigate the kernel cut-off operator via direct oscillatory integral techniques purely on symbolic level. We discuss the notion of parabolic for the calculus of Volterra operators, and construct Volterra parametrices for parabolic operators within the calculus. Universität Potsdam Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik 2002 Preprint application/pdf urn:nbn:de:kobv:517-opus-26200 http://opus.kobv.de/ubp/volltexte/2008/2620/ eng http://opus.kobv.de/ubp/doku/urheberrecht.php
collection NDLTD
language English
format Others
sources NDLTD
topic Mathematics
spellingShingle Mathematics
Krainer, Thomas
On the calculus of pseudodifferential operators with an anisotropic analytic parameter
description We introduce the Volterra calculus of pseudodifferential operators with an anisotropic analytic parameter based on "twisted" operator-valued Volterra symbols. We establish the properties of the symbolic and operational calculi, and we give and make use of explicit oscillatory integral formulas on the symbolic side. In particular, we investigate the kernel cut-off operator via direct oscillatory integral techniques purely on symbolic level. We discuss the notion of parabolic for the calculus of Volterra operators, and construct Volterra parametrices for parabolic operators within the calculus.
author Krainer, Thomas
author_facet Krainer, Thomas
author_sort Krainer, Thomas
title On the calculus of pseudodifferential operators with an anisotropic analytic parameter
title_short On the calculus of pseudodifferential operators with an anisotropic analytic parameter
title_full On the calculus of pseudodifferential operators with an anisotropic analytic parameter
title_fullStr On the calculus of pseudodifferential operators with an anisotropic analytic parameter
title_full_unstemmed On the calculus of pseudodifferential operators with an anisotropic analytic parameter
title_sort on the calculus of pseudodifferential operators with an anisotropic analytic parameter
publisher Universität Potsdam
publishDate 2002
url http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26200
http://opus.kobv.de/ubp/volltexte/2008/2620/
work_keys_str_mv AT krainerthomas onthecalculusofpseudodifferentialoperatorswithananisotropicanalyticparameter
_version_ 1716501708820971520