On the calculus of pseudodifferential operators with an anisotropic analytic parameter
We introduce the Volterra calculus of pseudodifferential operators with an anisotropic analytic parameter based on "twisted" operator-valued Volterra symbols. We establish the properties of the symbolic and operational calculi, and we give and make use of explicit oscillatory integral form...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Universität Potsdam
2002
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26200 http://opus.kobv.de/ubp/volltexte/2008/2620/ |
id |
ndltd-Potsdam-oai-kobv.de-opus-ubp-2620 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-Potsdam-oai-kobv.de-opus-ubp-26202013-01-08T00:54:59Z On the calculus of pseudodifferential operators with an anisotropic analytic parameter Krainer, Thomas Mathematics We introduce the Volterra calculus of pseudodifferential operators with an anisotropic analytic parameter based on "twisted" operator-valued Volterra symbols. We establish the properties of the symbolic and operational calculi, and we give and make use of explicit oscillatory integral formulas on the symbolic side. In particular, we investigate the kernel cut-off operator via direct oscillatory integral techniques purely on symbolic level. We discuss the notion of parabolic for the calculus of Volterra operators, and construct Volterra parametrices for parabolic operators within the calculus. Universität Potsdam Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik 2002 Preprint application/pdf urn:nbn:de:kobv:517-opus-26200 http://opus.kobv.de/ubp/volltexte/2008/2620/ eng http://opus.kobv.de/ubp/doku/urheberrecht.php |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Mathematics |
spellingShingle |
Mathematics Krainer, Thomas On the calculus of pseudodifferential operators with an anisotropic analytic parameter |
description |
We introduce the Volterra calculus of pseudodifferential operators with an anisotropic analytic parameter based on "twisted" operator-valued Volterra symbols. We establish the properties of the symbolic and operational calculi, and we give and make use of explicit oscillatory integral formulas on the symbolic side. In particular, we investigate the kernel cut-off operator via direct oscillatory integral techniques purely on symbolic level.
We discuss the notion of parabolic for the calculus of Volterra operators, and construct Volterra parametrices for parabolic operators within the calculus. |
author |
Krainer, Thomas |
author_facet |
Krainer, Thomas |
author_sort |
Krainer, Thomas |
title |
On the calculus of pseudodifferential operators with an anisotropic analytic parameter |
title_short |
On the calculus of pseudodifferential operators with an anisotropic analytic parameter |
title_full |
On the calculus of pseudodifferential operators with an anisotropic analytic parameter |
title_fullStr |
On the calculus of pseudodifferential operators with an anisotropic analytic parameter |
title_full_unstemmed |
On the calculus of pseudodifferential operators with an anisotropic analytic parameter |
title_sort |
on the calculus of pseudodifferential operators with an anisotropic analytic parameter |
publisher |
Universität Potsdam |
publishDate |
2002 |
url |
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26200 http://opus.kobv.de/ubp/volltexte/2008/2620/ |
work_keys_str_mv |
AT krainerthomas onthecalculusofpseudodifferentialoperatorswithananisotropicanalyticparameter |
_version_ |
1716501708820971520 |