The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols

We introduce the calculus of Mellin pseudodifferential operators parameters based on "twisted" operator-valued Volterra symbols as well aas the abstract Mellin calclus with holomorphic symbols. We establish the properties of the symblic and operational calculi, and we give and make use of...

Full description

Bibliographic Details
Main Author: Thomas Krainer
Format: Others
Language:English
Published: Universität Potsdam 2001
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26185
http://opus.kobv.de/ubp/volltexte/2008/2618/
id ndltd-Potsdam-oai-kobv.de-opus-ubp-2618
record_format oai_dc
spelling ndltd-Potsdam-oai-kobv.de-opus-ubp-26182013-01-08T00:54:59Z The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols Thomas Krainer Mathematics We introduce the calculus of Mellin pseudodifferential operators parameters based on "twisted" operator-valued Volterra symbols as well aas the abstract Mellin calclus with holomorphic symbols. We establish the properties of the symblic and operational calculi, and we give and make use of explicit oscillatory integral formulas on the symbolic side, e. g., for the Leibniz-product, kernel cut-off, and Mellin quantization. Moreover, we introduce the notion of parabolicity for the calculi of Volterra Mellin operators, and construct Volterra parametrices for parabolic operators within the calculi. Universität Potsdam Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik 2001 Preprint application/pdf urn:nbn:de:kobv:517-opus-26185 http://opus.kobv.de/ubp/volltexte/2008/2618/ eng http://opus.kobv.de/ubp/doku/urheberrecht.php
collection NDLTD
language English
format Others
sources NDLTD
topic Mathematics
spellingShingle Mathematics
Thomas Krainer
The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols
description We introduce the calculus of Mellin pseudodifferential operators parameters based on "twisted" operator-valued Volterra symbols as well aas the abstract Mellin calclus with holomorphic symbols. We establish the properties of the symblic and operational calculi, and we give and make use of explicit oscillatory integral formulas on the symbolic side, e. g., for the Leibniz-product, kernel cut-off, and Mellin quantization. Moreover, we introduce the notion of parabolicity for the calculi of Volterra Mellin operators, and construct Volterra parametrices for parabolic operators within the calculi.
author Thomas Krainer
author_facet Thomas Krainer
author_sort Thomas Krainer
title The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols
title_short The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols
title_full The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols
title_fullStr The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols
title_full_unstemmed The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols
title_sort calculus of volterra mellin pseudodifferential operators with operator-valued symbols
publisher Universität Potsdam
publishDate 2001
url http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26185
http://opus.kobv.de/ubp/volltexte/2008/2618/
work_keys_str_mv AT thomaskrainer thecalculusofvolterramellinpseudodifferentialoperatorswithoperatorvaluedsymbols
AT thomaskrainer calculusofvolterramellinpseudodifferentialoperatorswithoperatorvaluedsymbols
_version_ 1716501708105842688