The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols
We introduce the calculus of Mellin pseudodifferential operators parameters based on "twisted" operator-valued Volterra symbols as well aas the abstract Mellin calclus with holomorphic symbols. We establish the properties of the symblic and operational calculi, and we give and make use of...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Universität Potsdam
2001
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26185 http://opus.kobv.de/ubp/volltexte/2008/2618/ |
id |
ndltd-Potsdam-oai-kobv.de-opus-ubp-2618 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-Potsdam-oai-kobv.de-opus-ubp-26182013-01-08T00:54:59Z The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols Thomas Krainer Mathematics We introduce the calculus of Mellin pseudodifferential operators parameters based on "twisted" operator-valued Volterra symbols as well aas the abstract Mellin calclus with holomorphic symbols. We establish the properties of the symblic and operational calculi, and we give and make use of explicit oscillatory integral formulas on the symbolic side, e. g., for the Leibniz-product, kernel cut-off, and Mellin quantization. Moreover, we introduce the notion of parabolicity for the calculi of Volterra Mellin operators, and construct Volterra parametrices for parabolic operators within the calculi. Universität Potsdam Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik 2001 Preprint application/pdf urn:nbn:de:kobv:517-opus-26185 http://opus.kobv.de/ubp/volltexte/2008/2618/ eng http://opus.kobv.de/ubp/doku/urheberrecht.php |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Mathematics |
spellingShingle |
Mathematics Thomas Krainer The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols |
description |
We introduce the calculus of Mellin pseudodifferential operators parameters based on "twisted" operator-valued Volterra symbols as well aas the abstract Mellin calclus with holomorphic symbols. We establish the properties of the symblic and operational calculi, and we give and make use of explicit oscillatory integral formulas on the symbolic side, e. g., for the Leibniz-product, kernel cut-off, and Mellin quantization.
Moreover, we introduce the notion of parabolicity for the calculi of Volterra Mellin operators, and construct Volterra parametrices for parabolic operators within the calculi. |
author |
Thomas Krainer |
author_facet |
Thomas Krainer |
author_sort |
Thomas Krainer |
title |
The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols |
title_short |
The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols |
title_full |
The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols |
title_fullStr |
The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols |
title_full_unstemmed |
The calculus of Volterra Mellin pseudodifferential operators with operator-valued symbols |
title_sort |
calculus of volterra mellin pseudodifferential operators with operator-valued symbols |
publisher |
Universität Potsdam |
publishDate |
2001 |
url |
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26185 http://opus.kobv.de/ubp/volltexte/2008/2618/ |
work_keys_str_mv |
AT thomaskrainer thecalculusofvolterramellinpseudodifferentialoperatorswithoperatorvaluedsymbols AT thomaskrainer calculusofvolterramellinpseudodifferentialoperatorswithoperatorvaluedsymbols |
_version_ |
1716501708105842688 |