Elliptic operators in subspaces and the eta invariant
The paper deals with the calculation of the fractional part of the η-invariant for elliptic self-adjoint operators in topological terms. The method used to obtain the corresponding formula is based on the index theorem for elliptic operators in subspaces obtained in [1], [2]. It also utilizes K-theo...
Main Authors: | , , |
---|---|
Format: | Others |
Language: | English |
Published: |
Universität Potsdam
1999
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25496 http://opus.kobv.de/ubp/volltexte/2008/2549/ |
id |
ndltd-Potsdam-oai-kobv.de-opus-ubp-2549 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-Potsdam-oai-kobv.de-opus-ubp-25492013-01-08T00:54:51Z Elliptic operators in subspaces and the eta invariant Schulze, Bert-Wolfgang Savin, Anton Sternin, Boris index of elliptic operators in subspaces K-theory eta-invariant mod k index Atiyah-Patodi-Singer theory Mathematics The paper deals with the calculation of the fractional part of the η-invariant for elliptic self-adjoint operators in topological terms. The method used to obtain the corresponding formula is based on the index theorem for elliptic operators in subspaces obtained in [1], [2]. It also utilizes K-theory with coefficients Zsub(n). In particular, it is shown that the group K(T*M,Zsub(n)) is realized by elliptic operators (symbols) acting in appropriate subspaces. Universität Potsdam Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik 1999 Preprint application/pdf urn:nbn:de:kobv:517-opus-25496 http://opus.kobv.de/ubp/volltexte/2008/2549/ eng http://opus.kobv.de/ubp/doku/urheberrecht.php |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
index of elliptic operators in subspaces K-theory eta-invariant mod k index Atiyah-Patodi-Singer theory Mathematics |
spellingShingle |
index of elliptic operators in subspaces K-theory eta-invariant mod k index Atiyah-Patodi-Singer theory Mathematics Schulze, Bert-Wolfgang Savin, Anton Sternin, Boris Elliptic operators in subspaces and the eta invariant |
description |
The paper deals with the calculation of the fractional part of the η-invariant for elliptic self-adjoint operators in topological terms. The method used to obtain the corresponding formula is based on the index theorem for elliptic operators in subspaces obtained in [1], [2]. It also utilizes K-theory with coefficients Zsub(n). In particular, it is shown that the group K(T*M,Zsub(n)) is realized by elliptic operators (symbols) acting in appropriate subspaces. |
author |
Schulze, Bert-Wolfgang Savin, Anton Sternin, Boris |
author_facet |
Schulze, Bert-Wolfgang Savin, Anton Sternin, Boris |
author_sort |
Schulze, Bert-Wolfgang |
title |
Elliptic operators in subspaces and the eta invariant |
title_short |
Elliptic operators in subspaces and the eta invariant |
title_full |
Elliptic operators in subspaces and the eta invariant |
title_fullStr |
Elliptic operators in subspaces and the eta invariant |
title_full_unstemmed |
Elliptic operators in subspaces and the eta invariant |
title_sort |
elliptic operators in subspaces and the eta invariant |
publisher |
Universität Potsdam |
publishDate |
1999 |
url |
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25496 http://opus.kobv.de/ubp/volltexte/2008/2549/ |
work_keys_str_mv |
AT schulzebertwolfgang ellipticoperatorsinsubspacesandtheetainvariant AT savinanton ellipticoperatorsinsubspacesandtheetainvariant AT sterninboris ellipticoperatorsinsubspacesandtheetainvariant |
_version_ |
1716501685476524032 |