Lρ spectral independence of elliptic operators via commutator estimates
Let {Tsub(p) : q1 ≤ p ≤ q2} be a family of consistent Csub(0) semigroups on Lφ(Ω) with q1, q2 ∈ [1, ∞)and Ω ⊆ IRn open. We show that certain commutator conditions on Tφ and on the resolvent of its generator Aφ ensure the φ independence of the spectrum of Aφ for φ ∈ [q1, q2]. Applications include t...
Main Authors: | , |
---|---|
Format: | Others |
Language: | English |
Published: |
Universität Potsdam
1997
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25047 http://opus.kobv.de/ubp/volltexte/2008/2504/ |
Summary: | Let {Tsub(p) : q1 ≤ p ≤ q2} be a family of consistent Csub(0) semigroups on Lφ(Ω) with q1, q2 ∈ [1, ∞)and Ω ⊆ IRn open. We show that certain commutator conditions on Tφ and on the resolvent of its generator Aφ ensure the φ independence of the spectrum of Aφ for φ ∈ [q1, q2].
Applications include the case of Petrovskij correct systems with Hölder continuous coeffcients, Schrödinger operators, and certain elliptic operators in divergence form with real, but not necessarily symmetric, or complex coeffcients. |
---|