A calculus of boundary value problems in domains with Non-Lipschitz Singular Points

The paper is devoted to pseudodifferential boundary value problems in domains with singular points on the boundary. The tangent cone at a singular point is allowed to degenerate. In particular, the boundary may rotate and oscillate in a neighbourhood of such a point. We show a criterion for the Fred...

Full description

Bibliographic Details
Main Authors: Rabinovich, Vladimir, Schulze, Bert-Wolfgang, Tarkhanov, Nikolai
Format: Others
Language:English
Published: Universität Potsdam 1997
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24957
http://opus.kobv.de/ubp/volltexte/2008/2495/
id ndltd-Potsdam-oai-kobv.de-opus-ubp-2495
record_format oai_dc
spelling ndltd-Potsdam-oai-kobv.de-opus-ubp-24952013-01-08T00:54:44Z A calculus of boundary value problems in domains with Non-Lipschitz Singular Points Rabinovich, Vladimir Schulze, Bert-Wolfgang Tarkhanov, Nikolai pseudodifferential operators boundary value problems manifolds with cusps Mathematics The paper is devoted to pseudodifferential boundary value problems in domains with singular points on the boundary. The tangent cone at a singular point is allowed to degenerate. In particular, the boundary may rotate and oscillate in a neighbourhood of such a point. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to singular points. Universität Potsdam Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik 1997 Preprint application/pdf urn:nbn:de:kobv:517-opus-24957 http://opus.kobv.de/ubp/volltexte/2008/2495/ eng http://opus.kobv.de/ubp/doku/urheberrecht.php
collection NDLTD
language English
format Others
sources NDLTD
topic pseudodifferential operators
boundary value problems
manifolds with cusps
Mathematics
spellingShingle pseudodifferential operators
boundary value problems
manifolds with cusps
Mathematics
Rabinovich, Vladimir
Schulze, Bert-Wolfgang
Tarkhanov, Nikolai
A calculus of boundary value problems in domains with Non-Lipschitz Singular Points
description The paper is devoted to pseudodifferential boundary value problems in domains with singular points on the boundary. The tangent cone at a singular point is allowed to degenerate. In particular, the boundary may rotate and oscillate in a neighbourhood of such a point. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to singular points.
author Rabinovich, Vladimir
Schulze, Bert-Wolfgang
Tarkhanov, Nikolai
author_facet Rabinovich, Vladimir
Schulze, Bert-Wolfgang
Tarkhanov, Nikolai
author_sort Rabinovich, Vladimir
title A calculus of boundary value problems in domains with Non-Lipschitz Singular Points
title_short A calculus of boundary value problems in domains with Non-Lipschitz Singular Points
title_full A calculus of boundary value problems in domains with Non-Lipschitz Singular Points
title_fullStr A calculus of boundary value problems in domains with Non-Lipschitz Singular Points
title_full_unstemmed A calculus of boundary value problems in domains with Non-Lipschitz Singular Points
title_sort calculus of boundary value problems in domains with non-lipschitz singular points
publisher Universität Potsdam
publishDate 1997
url http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24957
http://opus.kobv.de/ubp/volltexte/2008/2495/
work_keys_str_mv AT rabinovichvladimir acalculusofboundaryvalueproblemsindomainswithnonlipschitzsingularpoints
AT schulzebertwolfgang acalculusofboundaryvalueproblemsindomainswithnonlipschitzsingularpoints
AT tarkhanovnikolai acalculusofboundaryvalueproblemsindomainswithnonlipschitzsingularpoints
AT rabinovichvladimir calculusofboundaryvalueproblemsindomainswithnonlipschitzsingularpoints
AT schulzebertwolfgang calculusofboundaryvalueproblemsindomainswithnonlipschitzsingularpoints
AT tarkhanovnikolai calculusofboundaryvalueproblemsindomainswithnonlipschitzsingularpoints
_version_ 1716501669681823744