Synchronization in active networks

In nature one commonly finds interacting complex oscillators which by the coupling scheme form small and large networks, e.g. neural networks. Surprisingly, the oscillators can synchronize, still preserving the complex behavior. Synchronization is a fundamental phenomenon in coupled nonlinear osc...

Full description

Bibliographic Details
Main Author: Pereira da Silva, Tiago
Format: Doctoral Thesis
Language:English
Published: Universität Potsdam 2007
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14347
http://opus.kobv.de/ubp/volltexte/2007/1434/
id ndltd-Potsdam-oai-kobv.de-opus-ubp-1434
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Synchronisation
Netzwerk
Phase
Information
Synchronization
Networks
Phase
Information
Natural sciences and mathematics
spellingShingle Synchronisation
Netzwerk
Phase
Information
Synchronization
Networks
Phase
Information
Natural sciences and mathematics
Pereira da Silva, Tiago
Synchronization in active networks
description In nature one commonly finds interacting complex oscillators which by the coupling scheme form small and large networks, e.g. neural networks. Surprisingly, the oscillators can synchronize, still preserving the complex behavior. Synchronization is a fundamental phenomenon in coupled nonlinear oscillators. Synchronization can be enhanced at different levels, that is, the constraints on which the synchronization appears. Those can be in the trajectory amplitude, requiring the amplitudes of both oscillators to be equal, giving place to complete synchronization. Conversely, the constraint could also be in a function of the trajectory, e.g. the phase, giving place to phase synchronization (PS). In this case, one requires the phase difference between both oscillators to be finite for all times, while the trajectory amplitude may be uncorrelated. The study of PS has shown its relevance to important technological problems, e.g. communication, collective behavior in neural networks, pattern formation, Parkinson disease, epilepsy, as well as behavioral activities. It has been reported that it mediates processes of information transmission and collective behavior in neural and active networks and communication processes in the Human brain. In this work, we have pursed a general way to analyze the onset of PS in small and large networks. Firstly, we have analyzed many phase coordinates for compact attractors. We have shown that for a broad class of attractors the PS phenomenon is invariant under the phase definition. Our method enables to state about the existence of phase synchronization in coupled chaotic oscillators without having to measure the phase. This is done by observing the oscillators at special times, and analyzing whether this set of points is localized. We have show that this approach is fruitful to analyze the onset of phase synchronization in chaotic attractors whose phases are not well defined, as well as, in networks of non-identical spiking/bursting neurons connected by chemical synapses. Moreover, we have also related the synchronization and the information transmission through the conditional observations. In particular, we have found that inside a network clusters may appear. These can be used to transmit more than one information, which provides a multi-processing of information. Furthermore, These clusters provide a multichannel communication, that is, one can integrate a large number of neurons into a single communication system, and information can arrive simultaneously at different places of the network. === In oder Natur sind interagierende komplexe Oszillatoren, die Netzwerke bilden, häufig anzutreffen. Erstaunlich ist, dass sich diese Oszillatoren synchronisieren, ohne ihr eigenes komplexes Verhalten zu verlieren. Diese Fähigkeit zur Synchronisation ist eine wesentliche Eigenschaft von gekoppelten nichtlinearen Oszillatoren. Die Fähigkeit zur Synchronisation kann auf unterschiedliche Weise durch Eingriff in die Bedingungen, die zur Synchronisation führen, verbessert werden. Es kann sowohl eine Synchronisation der Amplituden als auch der Phasen stattfinden bzw. erzwungen werden. Insbesondere Phase Synchronisation über die Phase (PS) hat sich in den wichtigen Bereichen der Technik, Kommunikation, Soziologie und Neurologie als Modellierungsgrundlage bewiesen. Bekannte Beispiele aus der Neurologie sind Parkinson und Epilepsie. In der vorliegenden Arbeit haben wir nach einem verallgemeinerten Weg gesucht, das Phänomen der PS in Netzwerken analysieren zu können. Zuerst haben wir viele Phasendefinitionen für einfache Attraktoren (Oszillatoren mit definierten Phaseneigenschaften) untersucht und festgestellt, dass das Phänomen der PS unabhängig von der Definition der Phase ist. Als nächstes haben wir begonnen, die maximale Abweichungen abzuschätzen, bei der die Synchronisation für bei einer gegebene Phase nicht verlorengeht. Abschließend haben wir eine Methode entwickelt, mittels derer Synchronisation in chaotischen System festgestellt werden kann, ohne die Phase selbst messen zu müssen. Dazu wird zu geeigneten Zeitpunkten der Zustandsraum untersucht. Wir können zeigen, dass mittels dieser Methode in chaotisch Systemen sowohl die Grössenordnung der Synchronisation als auch die Bereiche, in denen Synchronisation stattfindet, untersucht werden können. Dabei kann festgestellt werden, dass der Grad der Synchronisation mit der Menge an Information in Beziehung steht, die an verschieden Stellen eines Netzwerks gleichzeitig übermittelt wird. Dies kann zur Modellierung der Informationsübertragung über die Synapsen im Gehirn verwendet werden.
author Pereira da Silva, Tiago
author_facet Pereira da Silva, Tiago
author_sort Pereira da Silva, Tiago
title Synchronization in active networks
title_short Synchronization in active networks
title_full Synchronization in active networks
title_fullStr Synchronization in active networks
title_full_unstemmed Synchronization in active networks
title_sort synchronization in active networks
publisher Universität Potsdam
publishDate 2007
url http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14347
http://opus.kobv.de/ubp/volltexte/2007/1434/
work_keys_str_mv AT pereiradasilvatiago synchronizationinactivenetworks
_version_ 1716501591152918528
spelling ndltd-Potsdam-oai-kobv.de-opus-ubp-14342013-01-08T00:54:37Z Synchronization in active networks Pereira da Silva, Tiago Synchronisation Netzwerk Phase Information Synchronization Networks Phase Information Natural sciences and mathematics In nature one commonly finds interacting complex oscillators which by the coupling scheme form small and large networks, e.g. neural networks. Surprisingly, the oscillators can synchronize, still preserving the complex behavior. Synchronization is a fundamental phenomenon in coupled nonlinear oscillators. Synchronization can be enhanced at different levels, that is, the constraints on which the synchronization appears. Those can be in the trajectory amplitude, requiring the amplitudes of both oscillators to be equal, giving place to complete synchronization. Conversely, the constraint could also be in a function of the trajectory, e.g. the phase, giving place to phase synchronization (PS). In this case, one requires the phase difference between both oscillators to be finite for all times, while the trajectory amplitude may be uncorrelated. The study of PS has shown its relevance to important technological problems, e.g. communication, collective behavior in neural networks, pattern formation, Parkinson disease, epilepsy, as well as behavioral activities. It has been reported that it mediates processes of information transmission and collective behavior in neural and active networks and communication processes in the Human brain. In this work, we have pursed a general way to analyze the onset of PS in small and large networks. Firstly, we have analyzed many phase coordinates for compact attractors. We have shown that for a broad class of attractors the PS phenomenon is invariant under the phase definition. Our method enables to state about the existence of phase synchronization in coupled chaotic oscillators without having to measure the phase. This is done by observing the oscillators at special times, and analyzing whether this set of points is localized. We have show that this approach is fruitful to analyze the onset of phase synchronization in chaotic attractors whose phases are not well defined, as well as, in networks of non-identical spiking/bursting neurons connected by chemical synapses. Moreover, we have also related the synchronization and the information transmission through the conditional observations. In particular, we have found that inside a network clusters may appear. These can be used to transmit more than one information, which provides a multi-processing of information. Furthermore, These clusters provide a multichannel communication, that is, one can integrate a large number of neurons into a single communication system, and information can arrive simultaneously at different places of the network. In oder Natur sind interagierende komplexe Oszillatoren, die Netzwerke bilden, häufig anzutreffen. Erstaunlich ist, dass sich diese Oszillatoren synchronisieren, ohne ihr eigenes komplexes Verhalten zu verlieren. Diese Fähigkeit zur Synchronisation ist eine wesentliche Eigenschaft von gekoppelten nichtlinearen Oszillatoren. Die Fähigkeit zur Synchronisation kann auf unterschiedliche Weise durch Eingriff in die Bedingungen, die zur Synchronisation führen, verbessert werden. Es kann sowohl eine Synchronisation der Amplituden als auch der Phasen stattfinden bzw. erzwungen werden. Insbesondere Phase Synchronisation über die Phase (PS) hat sich in den wichtigen Bereichen der Technik, Kommunikation, Soziologie und Neurologie als Modellierungsgrundlage bewiesen. Bekannte Beispiele aus der Neurologie sind Parkinson und Epilepsie. In der vorliegenden Arbeit haben wir nach einem verallgemeinerten Weg gesucht, das Phänomen der PS in Netzwerken analysieren zu können. Zuerst haben wir viele Phasendefinitionen für einfache Attraktoren (Oszillatoren mit definierten Phaseneigenschaften) untersucht und festgestellt, dass das Phänomen der PS unabhängig von der Definition der Phase ist. Als nächstes haben wir begonnen, die maximale Abweichungen abzuschätzen, bei der die Synchronisation für bei einer gegebene Phase nicht verlorengeht. Abschließend haben wir eine Methode entwickelt, mittels derer Synchronisation in chaotischen System festgestellt werden kann, ohne die Phase selbst messen zu müssen. Dazu wird zu geeigneten Zeitpunkten der Zustandsraum untersucht. Wir können zeigen, dass mittels dieser Methode in chaotisch Systemen sowohl die Grössenordnung der Synchronisation als auch die Bereiche, in denen Synchronisation stattfindet, untersucht werden können. Dabei kann festgestellt werden, dass der Grad der Synchronisation mit der Menge an Information in Beziehung steht, die an verschieden Stellen eines Netzwerks gleichzeitig übermittelt wird. Dies kann zur Modellierung der Informationsübertragung über die Synapsen im Gehirn verwendet werden. Universität Potsdam Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie 2007 Text.Thesis.Doctoral application/pdf urn:nbn:de:kobv:517-opus-14347 http://opus.kobv.de/ubp/volltexte/2007/1434/ eng http://opus.kobv.de/ubp/doku/urheberrecht.php