Synchronization via correlated noise and automatic control in ecological systems

<img src="http://vg00.met.vgwort.de/na/806c85cec18906a64e06" width="1" height="1" alt=""> Subject of this work is the possibility to synchronize nonlinear systems via correlated noise and automatic control. The thesis is divided into two parts.<br>...

Full description

Bibliographic Details
Main Author: Kuckländer, Nina
Format: Doctoral Thesis
Language:English
Published: Universität Potsdam 2006
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10826
http://opus.kobv.de/ubp/volltexte/2006/1082/
Description
Summary:<img src="http://vg00.met.vgwort.de/na/806c85cec18906a64e06" width="1" height="1" alt=""> Subject of this work is the possibility to synchronize nonlinear systems via correlated noise and automatic control. The thesis is divided into two parts.<br> The first part is motivated by field studies on feral sheep populations on two islands of the St. Kilda archipelago, which revealed strong correlations due to environmental noise. For a linear system the population correlation equals the noise correlation (Moran effect). But there exists no systematic examination of the properties of nonlinear maps under the influence of correlated noise. Therefore, in the first part of this thesis the noise-induced correlation of logistic maps is systematically examined. For small noise intensities it can be shown analytically that the correlation of quadratic maps in the fixed-point regime is always smaller than or equal to the noise correlation. In the period-2 regime a Markov model explains qualitatively the main dynamical characteristics. Furthermore, two different mechanisms are introduced which lead to a higher correlation of the systems than the environmental correlation. The new effect of "correlation resonance" is described, i. e. the correlation yields a maximum depending on the noise intensity. <br> In the second part of the thesis an automatic control method is presented which synchronizes different systems in a robust way. This method is inspired by phase-locked loops and is based on a feedback loop with a differential control scheme, which allows to change the phases of the controlled systems. The effectiveness of the approach is demonstrated for controlled phase synchronization of regular oscillators and foodweb models. === Gegenstand der Arbeit ist die Möglichkeit der Synchronisierung von nichtlinearen Systemen durch korreliertes Rauschen und automatische Kontrolle. Die Arbeit gliedert sich in zwei Teile.<br> Der erste Teil ist motiviert durch Feldstudien an wilden Schafspopulationen auf zwei Inseln des St. Kilda Archipels, die starke Korrelationen aufgrund von Umwelteinflüssen zeigen. In einem linearen System entspricht die Korrelation der beiden Populationen genau der Rauschkorrelation (Moran-Effekt). Es existiert aber noch keine systematische Untersuchung des Verhaltens nichtlinearer Abbildungen unter dem Einfluss korrelierten Rauschens. Deshalb wird im ersten Teils dieser Arbeit systematisch die rauschinduzierte Korrelation zweier logistischer Abbildungen in den verschiedenen dynamischen Bereichen untersucht. Für kleine Rauschintensitäten wird analytisch gezeigt, dass die Korrelation von quadratischen Abbildungen im Fixpunktbereich immer kleiner oder gleich der Rauschkorrelation ist. Im Periode-2 Bereich beschreibt ein Markov-Modell qualitativ die wichtigsten dynamischen Eigenschaften. Weiterhin werden zwei unterschiedliche Mechanismen vorgestellt, die dazu führen, dass die beiden ungekoppelten Systeme stärker als ihre Umwelt korreliert sein können. Dabei wird der neue Effekt der "correlation resonance" aufgezeigt, d. h. es ergibt sich eine Resonanzkurve der Korrelation in Abbhängkeit von der Rauschstärke. <br> Im zweiten Teil der Arbeit wird eine automatische Kontroll-Methode präsentiert, die es ermöglicht sehr unterschiedliche Systeme auf robuste Weise in Phase zu synchronisieren. Die Methode ist angelehnt an Phase-locked-Loops und basiert auf einer Rückkopplungsschleife durch einen speziellen Regler, der es erlaubt die Phasen der kontrollierten Systeme zu ändern. Die Effektivität dieser Methode zur Kontrolle der Phasensynchronisierung wird an regulären Oszillatoren und an Nahrungskettenmodellen demonstriert.