Isotope selective analysis of CO2 with tunable diode laser (TDL) spectroscopy in the NIR
The performance of a home-built tunable diode laser (TDL) spectrometer, aimed at multi-line detection of carbon dioxide, has been evaluated and optimized. In the regime of the (30<SUP>0</SUP>1)<SUB>III</SUB> / (000) band of <SUP>12</SUP>CO<SUB>2</SUB>...
Main Authors: | , , , |
---|---|
Format: | Others |
Language: | English |
Published: |
Universität Potsdam
2004
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10167 http://opus.kobv.de/ubp/volltexte/2006/1016/ |
Summary: | The performance of a home-built tunable diode laser (TDL) spectrometer, aimed at multi-line detection of carbon dioxide, has been evaluated and optimized. In the regime of the (30<SUP>0</SUP>1)<SUB>III</SUB> / (000) band of <SUP>12</SUP>CO<SUB>2</SUB> around 1.6 μm, the dominating isotope species <SUP>12</SUP>CO<SUB>2</SUB>, <SUP>13</SUP>CO<SUB>2</SUB>, and <SUP>12</SUP>C<SUP>18</SUP>O<SUP>16</SUP>O were detected simultaneously without interference by water vapor. Detection limits in the range of few ppmv were obtained for each species utilizing wavelength modulation (WM) spectroscopy with balanced detection in a long-path absorption cell set-up. High sensitivity in conjunction with high precision —typically ±1‰ and ±6‰ for 3% and 0.7% of CO<SUB>2</SUB>, respectively— renders this experimental approach a promising analytical concept for isotope-ratio determination of carbon dioxide in soil and breath gas. For a moderate <SUP>12</SUP>CO<SUB>2</SUB> line, the pressure dependence of the line profile was characterized in detail, to account for pressure effects on sensitive measurements. |
---|