Índices de gérmenes de foliaciones holomorfas en el plano

Un germen de foliación holomorfa singular en (C2, p) con singularidad aislada se dirá que es de segundo tipo si no presenta sillas-nodos tangentes en su reducción de singularidades. Entendiendo por singularidad de tipo silla-nodo tangente como aquel cuya separatriz débil está contenida en el divi...

Full description

Bibliographic Details
Main Author: Cavero Chuquiviguel, Jorge Edinson
Other Authors: Neciosup Puican, Hernán
Format: Dissertation
Language:Spanish
Published: Pontificia Universidad Católica del Perú 2021
Subjects:
Online Access:http://hdl.handle.net/20.500.12404/19482
Description
Summary:Un germen de foliación holomorfa singular en (C2, p) con singularidad aislada se dirá que es de segundo tipo si no presenta sillas-nodos tangentes en su reducción de singularidades. Entendiendo por singularidad de tipo silla-nodo tangente como aquel cuya separatriz débil está contenida en el divisor excepcional. La finalidad de este trabajo es exhibir un criterio que nos permita caracterizar cuándo un germen de foliación holomorfa en (C2, p) es de segundo tipo. Para tal fin, estudiamos la teoría de índices para foliaciones holomorfas singulares sobre (C2, p). También caracterizamos las foliaciones de tipo curva generalizada, vía el índice de exceso polar. Cabe señalar que el presente trabajo es motivado por el trabajo debido a Arturo Fernández y Rogério Mol, ([FPM17]). Además de los trabajos expuestos por Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]), Yohann Genzmer y Rogério Mol ([GM18]). === A germ of singular holomorphic foliation at (C2, p) with an isolated singularity will be said of second type if it does not present tangent saddle-nodes in its reduction of singularities. Understanding by singularity of tangent saddle-node type as whose weak separatrix is contained in the exceptional divisor. The purpose of this work is to show a criterion that allows us to characterize when a germ of holomorphic foliation at (C2, p) is of second type. That is the reason why we study the theory of indices of singular holomorphic foliations at (C2, p). We also characterize generalized curve foliations, via the polar excess index. It should be noted that this work is motivated by the paper due to Arturo Fernández and Rogério Mol ([FPM17]), Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]), Yohann Genzmer and Rogério Mol ([GM18]).