Sensitivity of a global climate model to the urban land unit

<p> With more than half of the world's population living in urban areas, it is important that the relationships between the urban environment and climate are better understood. The current research aims to continue the effort in assessing and understanding the urban environment through t...

Full description

Bibliographic Details
Main Author: Bogart, Tianna A.
Language:EN
Published: University of Delaware 2013
Subjects:
Online Access:http://pqdtopen.proquest.com/#viewpdf?dispub=3598618
id ndltd-PROQUEST-oai-pqdtoai.proquest.com-3598618
record_format oai_dc
spelling ndltd-PROQUEST-oai-pqdtoai.proquest.com-35986182013-12-12T03:54:14Z Sensitivity of a global climate model to the urban land unit Bogart, Tianna A. Physical Geography|Climate Change <p> With more than half of the world's population living in urban areas, it is important that the relationships between the urban environment and climate are better understood. The current research aims to continue the effort in assessing and understanding the urban environment through the use of a global climate model (GCM). Given the relative newness of the presence of an urban land type and model in a GCM, there are many more facets of the urban-climate relationship to be investigated. By comparing thirty-year ensembles of CAM4 coupled with CLM4 both with (U) and without (U<sub>n</sub>) the inclusion of the urban land type, the sensitivity of the atmospheric model to urban land cover is assessed. As expected, largest differences tend to be in the Northern Hemisphere due to the location of most of the globe's densest and expansive cities. Significant differences in the basic climate variables of temperature and precipitation are present at annual, seasonal, and monthly scales in some regions. Seasonality to the urban influence also exists with the transition months of Spring and Fall having the largest difference in temperatures. Of the eleven regions defined by Oleson (2012), three were most impacted by the presence of urban land cover in the model&mdash;Europe, Central Asia, and East Asia. </p><p> Since urban attributes can vary greatly within one world continent, the sensitivity of regional climates to the urban type parameters is also explored. By setting all urban land cover to only one urban density type, the importance of city composition on climate, even within the same city, is highlighted. While preserving the distinct urban regional characteristics and the geographical distribution of urbanized areas, the model is run with homogeneous urban types: high density and tall building district. As with the default urban and excluded urban runs, a strong seasonality to the differences between the solo-high-density simulation and default urban (U<sub>HD</sub> &ndash; U) and solo-tall-building-district-density simulation and default urban (U<sub>TBD</sub> &ndash; U) exists. Overall, the transition and winter months are most sensitive to changes in urban density type.</p> University of Delaware 2013-12-06 00:00:00.0 thesis http://pqdtopen.proquest.com/#viewpdf?dispub=3598618 EN
collection NDLTD
language EN
sources NDLTD
topic Physical Geography|Climate Change
spellingShingle Physical Geography|Climate Change
Bogart, Tianna A.
Sensitivity of a global climate model to the urban land unit
description <p> With more than half of the world's population living in urban areas, it is important that the relationships between the urban environment and climate are better understood. The current research aims to continue the effort in assessing and understanding the urban environment through the use of a global climate model (GCM). Given the relative newness of the presence of an urban land type and model in a GCM, there are many more facets of the urban-climate relationship to be investigated. By comparing thirty-year ensembles of CAM4 coupled with CLM4 both with (U) and without (U<sub>n</sub>) the inclusion of the urban land type, the sensitivity of the atmospheric model to urban land cover is assessed. As expected, largest differences tend to be in the Northern Hemisphere due to the location of most of the globe's densest and expansive cities. Significant differences in the basic climate variables of temperature and precipitation are present at annual, seasonal, and monthly scales in some regions. Seasonality to the urban influence also exists with the transition months of Spring and Fall having the largest difference in temperatures. Of the eleven regions defined by Oleson (2012), three were most impacted by the presence of urban land cover in the model&mdash;Europe, Central Asia, and East Asia. </p><p> Since urban attributes can vary greatly within one world continent, the sensitivity of regional climates to the urban type parameters is also explored. By setting all urban land cover to only one urban density type, the importance of city composition on climate, even within the same city, is highlighted. While preserving the distinct urban regional characteristics and the geographical distribution of urbanized areas, the model is run with homogeneous urban types: high density and tall building district. As with the default urban and excluded urban runs, a strong seasonality to the differences between the solo-high-density simulation and default urban (U<sub>HD</sub> &ndash; U) and solo-tall-building-district-density simulation and default urban (U<sub>TBD</sub> &ndash; U) exists. Overall, the transition and winter months are most sensitive to changes in urban density type.</p>
author Bogart, Tianna A.
author_facet Bogart, Tianna A.
author_sort Bogart, Tianna A.
title Sensitivity of a global climate model to the urban land unit
title_short Sensitivity of a global climate model to the urban land unit
title_full Sensitivity of a global climate model to the urban land unit
title_fullStr Sensitivity of a global climate model to the urban land unit
title_full_unstemmed Sensitivity of a global climate model to the urban land unit
title_sort sensitivity of a global climate model to the urban land unit
publisher University of Delaware
publishDate 2013
url http://pqdtopen.proquest.com/#viewpdf?dispub=3598618
work_keys_str_mv AT bogarttiannaa sensitivityofaglobalclimatemodeltotheurbanlandunit
_version_ 1716617194966614016