Boolean Partition Algebras

<p>A Boolean partition algebra is a pair (<i>B</i>, <i>F </i>) where <i>B</i> is a Boolean algebra and <i>F</i> is a filter on the semilattice of partitions of <i>B</i> where [special characters omitted] <i>F</i> = <i&g...

Full description

Bibliographic Details
Main Author: Van Name, Joseph
Language:EN
Published: University of South Florida 2013
Subjects:
Online Access:http://pqdtopen.proquest.com/#viewpdf?dispub=3560193
id ndltd-PROQUEST-oai-pqdtoai.proquest.com-3560193
record_format oai_dc
spelling ndltd-PROQUEST-oai-pqdtoai.proquest.com-35601932013-11-07T15:56:22Z Boolean Partition Algebras Van Name, Joseph Mathematics <p>A Boolean partition algebra is a pair (<i>B</i>, <i>F </i>) where <i>B</i> is a Boolean algebra and <i>F</i> is a filter on the semilattice of partitions of <i>B</i> where [special characters omitted] <i>F</i> = <i>B</i> \ {0}. In this dissertation, we shall investigate the algebraic theory of Boolean partition algebras and their connection with uniform spaces. In particular, we shall show that the category of complete non-Archimedean uniform spaces is equivalent to a subcategory of the category of Boolean partition algebras, and notions such as supercompleteness of non-Archimedean uniform spaces can be formulated in terms of Boolean partition algebras.</p> University of South Florida 2013-06-04 00:00:00.0 thesis http://pqdtopen.proquest.com/#viewpdf?dispub=3560193 EN
collection NDLTD
language EN
sources NDLTD
topic Mathematics
spellingShingle Mathematics
Van Name, Joseph
Boolean Partition Algebras
description <p>A Boolean partition algebra is a pair (<i>B</i>, <i>F </i>) where <i>B</i> is a Boolean algebra and <i>F</i> is a filter on the semilattice of partitions of <i>B</i> where [special characters omitted] <i>F</i> = <i>B</i> \ {0}. In this dissertation, we shall investigate the algebraic theory of Boolean partition algebras and their connection with uniform spaces. In particular, we shall show that the category of complete non-Archimedean uniform spaces is equivalent to a subcategory of the category of Boolean partition algebras, and notions such as supercompleteness of non-Archimedean uniform spaces can be formulated in terms of Boolean partition algebras.</p>
author Van Name, Joseph
author_facet Van Name, Joseph
author_sort Van Name, Joseph
title Boolean Partition Algebras
title_short Boolean Partition Algebras
title_full Boolean Partition Algebras
title_fullStr Boolean Partition Algebras
title_full_unstemmed Boolean Partition Algebras
title_sort boolean partition algebras
publisher University of South Florida
publishDate 2013
url http://pqdtopen.proquest.com/#viewpdf?dispub=3560193
work_keys_str_mv AT vannamejoseph booleanpartitionalgebras
_version_ 1716613304603901952