Boolean Partition Algebras
<p>A Boolean partition algebra is a pair (<i>B</i>, <i>F </i>) where <i>B</i> is a Boolean algebra and <i>F</i> is a filter on the semilattice of partitions of <i>B</i> where [special characters omitted] <i>F</i> = <i&g...
Main Author: | |
---|---|
Language: | EN |
Published: |
University of South Florida
2013
|
Subjects: | |
Online Access: | http://pqdtopen.proquest.com/#viewpdf?dispub=3560193 |
id |
ndltd-PROQUEST-oai-pqdtoai.proquest.com-3560193 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-PROQUEST-oai-pqdtoai.proquest.com-35601932013-11-07T15:56:22Z Boolean Partition Algebras Van Name, Joseph Mathematics <p>A Boolean partition algebra is a pair (<i>B</i>, <i>F </i>) where <i>B</i> is a Boolean algebra and <i>F</i> is a filter on the semilattice of partitions of <i>B</i> where [special characters omitted] <i>F</i> = <i>B</i> \ {0}. In this dissertation, we shall investigate the algebraic theory of Boolean partition algebras and their connection with uniform spaces. In particular, we shall show that the category of complete non-Archimedean uniform spaces is equivalent to a subcategory of the category of Boolean partition algebras, and notions such as supercompleteness of non-Archimedean uniform spaces can be formulated in terms of Boolean partition algebras.</p> University of South Florida 2013-06-04 00:00:00.0 thesis http://pqdtopen.proquest.com/#viewpdf?dispub=3560193 EN |
collection |
NDLTD |
language |
EN |
sources |
NDLTD |
topic |
Mathematics |
spellingShingle |
Mathematics Van Name, Joseph Boolean Partition Algebras |
description |
<p>A Boolean partition algebra is a pair (<i>B</i>, <i>F </i>) where <i>B</i> is a Boolean algebra and <i>F</i> is a filter on the semilattice of partitions of <i>B</i> where [special characters omitted] <i>F</i> = <i>B</i> \ {0}. In this dissertation, we shall investigate the algebraic theory of Boolean partition algebras and their connection with uniform spaces. In particular, we shall show that the category of complete non-Archimedean uniform spaces is equivalent to a subcategory of the category of Boolean partition algebras, and notions such as supercompleteness of non-Archimedean uniform spaces can be formulated in terms of Boolean partition algebras.</p> |
author |
Van Name, Joseph |
author_facet |
Van Name, Joseph |
author_sort |
Van Name, Joseph |
title |
Boolean Partition Algebras |
title_short |
Boolean Partition Algebras |
title_full |
Boolean Partition Algebras |
title_fullStr |
Boolean Partition Algebras |
title_full_unstemmed |
Boolean Partition Algebras |
title_sort |
boolean partition algebras |
publisher |
University of South Florida |
publishDate |
2013 |
url |
http://pqdtopen.proquest.com/#viewpdf?dispub=3560193 |
work_keys_str_mv |
AT vannamejoseph booleanpartitionalgebras |
_version_ |
1716613304603901952 |