Numerical realization of the generalized Carrier-Greenspan transform for the shallow water wave equations
<p> Run-up of long waves in sloping U-shaped bays is studied analytically in the framework of the 1-D nonlinear shallow-water theory. By assuming that the wave flow is uniform along the cross-section, the 2-D nonlinear shallow-water equations are reduced to a linear semi-axis variable-coeffici...
Main Author: | |
---|---|
Language: | EN |
Published: |
University of Alaska Fairbanks
2015
|
Subjects: | |
Online Access: | http://pqdtopen.proquest.com/#viewpdf?dispub=1598961 |
Summary: | <p> Run-up of long waves in sloping U-shaped bays is studied analytically in the framework of the 1-D nonlinear shallow-water theory. By assuming that the wave flow is uniform along the cross-section, the 2-D nonlinear shallow-water equations are reduced to a linear semi-axis variable-coefficient 1-D wave equation via the generalized Carrier-Greenspan transformation (Rybkin et al., 2014). A spectral solution is developed by solving the linear semiaxis variable-coefficient 1-D equation via separation of variables and then applying the inverse Carrier-Greenspan transform. To compute the run-up of a given long wave a numerical method is developed to find the eigenfunction decomposition required for the spectral solution in the linearized system. The run-up of a long wave in a bathymetry characteristic of a narrow canyon is then examined.</p> |
---|