Structural enhancement utilizing smart materials| Experiments and applications involving piezoelectric actuators and shape memory alloys
<p> Smart materials, within the realm of structural engineering, are mainly used as either sensoric mechanisms or as structural damping mechanisms. For the most part, structural enhancement utilizing smart materials is not seen in main stream structural engineering practices. </p><p&...
Main Author: | |
---|---|
Language: | EN |
Published: |
North Dakota State University
2015
|
Subjects: | |
Online Access: | http://pqdtopen.proquest.com/#viewpdf?dispub=1592710 |
id |
ndltd-PROQUEST-oai-pqdtoai.proquest.com-1592710 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-PROQUEST-oai-pqdtoai.proquest.com-15927102015-09-03T04:17:13Z Structural enhancement utilizing smart materials| Experiments and applications involving piezoelectric actuators and shape memory alloys Schanandore, Thomas Charles Civil engineering|Environmental engineering <p> Smart materials, within the realm of structural engineering, are mainly used as either sensoric mechanisms or as structural damping mechanisms. For the most part, structural enhancement utilizing smart materials is not seen in main stream structural engineering practices. </p><p> Piezoelectric ceramics and shape memory alloys are two smart materials that are explored. In comparison shape memory alloys have far greater actuation strain (2% - 7%) than piezoelectric (0.08% - 0.11%) ceramics. </p><p> Piezoelectric actuators are employed as surface actuators. Shape memory alloys are also explored in this manner, but the analysis is taken a step further where shape memory alloys are explored as beam and column retrofit elements. </p><p> Because of the low mechanical range of the piezoelectric material, the potential for stress reduction is bound to lower stress applications. The general conclusion for shape memory alloys is that it would be suitable for high stress applications which include main stream steel applications. </p> North Dakota State University 2015-09-02 00:00:00.0 thesis http://pqdtopen.proquest.com/#viewpdf?dispub=1592710 EN |
collection |
NDLTD |
language |
EN |
sources |
NDLTD |
topic |
Civil engineering|Environmental engineering |
spellingShingle |
Civil engineering|Environmental engineering Schanandore, Thomas Charles Structural enhancement utilizing smart materials| Experiments and applications involving piezoelectric actuators and shape memory alloys |
description |
<p> Smart materials, within the realm of structural engineering, are mainly used as either sensoric mechanisms or as structural damping mechanisms. For the most part, structural enhancement utilizing smart materials is not seen in main stream structural engineering practices. </p><p> Piezoelectric ceramics and shape memory alloys are two smart materials that are explored. In comparison shape memory alloys have far greater actuation strain (2% - 7%) than piezoelectric (0.08% - 0.11%) ceramics. </p><p> Piezoelectric actuators are employed as surface actuators. Shape memory alloys are also explored in this manner, but the analysis is taken a step further where shape memory alloys are explored as beam and column retrofit elements. </p><p> Because of the low mechanical range of the piezoelectric material, the potential for stress reduction is bound to lower stress applications. The general conclusion for shape memory alloys is that it would be suitable for high stress applications which include main stream steel applications. </p> |
author |
Schanandore, Thomas Charles |
author_facet |
Schanandore, Thomas Charles |
author_sort |
Schanandore, Thomas Charles |
title |
Structural enhancement utilizing smart materials| Experiments and applications involving piezoelectric actuators and shape memory alloys |
title_short |
Structural enhancement utilizing smart materials| Experiments and applications involving piezoelectric actuators and shape memory alloys |
title_full |
Structural enhancement utilizing smart materials| Experiments and applications involving piezoelectric actuators and shape memory alloys |
title_fullStr |
Structural enhancement utilizing smart materials| Experiments and applications involving piezoelectric actuators and shape memory alloys |
title_full_unstemmed |
Structural enhancement utilizing smart materials| Experiments and applications involving piezoelectric actuators and shape memory alloys |
title_sort |
structural enhancement utilizing smart materials| experiments and applications involving piezoelectric actuators and shape memory alloys |
publisher |
North Dakota State University |
publishDate |
2015 |
url |
http://pqdtopen.proquest.com/#viewpdf?dispub=1592710 |
work_keys_str_mv |
AT schanandorethomascharles structuralenhancementutilizingsmartmaterialsexperimentsandapplicationsinvolvingpiezoelectricactuatorsandshapememoryalloys |
_version_ |
1716818174292262912 |