beta-Sheet forming peptides by design| Control of folding and applications

<p> The focus of the present research is the synthesis of polypeptides for the study of protein folding and misfolding and for the development of novel polypeptide-based optical antennas in nanotechnology. It is hypothesized that simple polypeptides can be used as models to mimic <i>in v...

Full description

Bibliographic Details
Main Author: Takor, Gaius A.
Language:EN
Published: State University of New York at Albany 2016
Subjects:
Online Access:http://pqdtopen.proquest.com/#viewpdf?dispub=10103515
Description
Summary:<p> The focus of the present research is the synthesis of polypeptides for the study of protein folding and misfolding and for the development of novel polypeptide-based optical antennas in nanotechnology. It is hypothesized that simple polypeptides can be used as models to mimic <i>in vivo</i> folding of globular proteins. Desired repetitive polypeptides were genetically encoded and expressed in <i>E. coli</i> using conventional methods and characterized using a variety of spectroscopic (including circular dichroism (CD), deep UV resonance Raman (DUVRR), UV-vis and fluorescence) and microscopic (atomic force microscopy (AFM) and transmission electron microscopy (TEM)) techniques. The polypeptides predominantly formed bilayer, fibrillar structures with a cross &beta;-core. <b>YEHK21-YE8</b>, a chimeric polypeptide, folded within three days. The folding/fibrillation of the chimeric construct illuminates the controlling factors and hence suggests the importance of those factors in amyloidogenic diseases. <b>YE8</b> and <b>YE8</b> derivatives illustrated the role of proline in &beta;-sheet formation. The EW polypeptide models elucidated the influence of tryptophan residues and the degree of polymerization on folding. The study of <b>EW14C1</b> and <b>EW21C1</b> demonstrated light-harvesting properties when labeled with a suitable dye.</p>