Structural design of confined masonry buildings using artificial neural networks
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. === The aim of this article is to use artificial neural networks (ANN) to perform the structural design of confined masonry buildings. ANN is easy to o...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2021
|
Subjects: | |
Online Access: | http://hdl.handle.net/10757/656414 |
id |
ndltd-PERUUPC-oai-repositorioacademico.upc.edu.pe-10757-656414 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-PERUUPC-oai-repositorioacademico.upc.edu.pe-10757-6564142021-06-09T05:12:04Z Structural design of confined masonry buildings using artificial neural networks Sicha Pillaca, Juan Carlos Molina Ramirez, Alexander Vasquez, Victor Arana artificial intelligence artificial neural networks confined masonry structural design El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. The aim of this article is to use artificial neural networks (ANN) to perform the structural design of confined masonry buildings. ANN is easy to operate and allows to reduce the time and cost of seismic designs. To generate the artificial neural network, training models (traditional confined masonry designs) are used to identify the input and output parameters. From this, the final architecture and activation functions are defined for each layer of the ANN. Finally, ANN training is carried out using the backpropagation algorithm to obtain the matrix of weights and thresholds that allow the network to operate and provide preliminary structural designs with a 10% margin of error, with respect to the traditional design, in the dimensions and reinforcements of the structural elements. 2021-06-08T13:21:47Z 2021-06-08T13:21:47Z 2020-09-30 info:eu-repo/semantics/article 10.1109/CONIITI51147.2020.9240404 http://hdl.handle.net/10757/656414 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings 2-s2.0-85096593247 SCOPUS_ID:85096593247 0000 0001 2196 144X eng https://ieeexplore.ieee.org/document/9240404 info:eu-repo/semantics/embargoedAccess application/html Institute of Electrical and Electronics Engineers Inc. 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings |
collection |
NDLTD |
language |
English |
format |
Article |
sources |
NDLTD |
topic |
artificial intelligence artificial neural networks confined masonry structural design |
spellingShingle |
artificial intelligence artificial neural networks confined masonry structural design Sicha Pillaca, Juan Carlos Molina Ramirez, Alexander Vasquez, Victor Arana Structural design of confined masonry buildings using artificial neural networks |
description |
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. === The aim of this article is to use artificial neural networks (ANN) to perform the structural design of confined masonry buildings. ANN is easy to operate and allows to reduce the time and cost of seismic designs. To generate the artificial neural network, training models (traditional confined masonry designs) are used to identify the input and output parameters. From this, the final architecture and activation functions are defined for each layer of the ANN. Finally, ANN training is carried out using the backpropagation algorithm to obtain the matrix of weights and thresholds that allow the network to operate and provide preliminary structural designs with a 10% margin of error, with respect to the traditional design, in the dimensions and reinforcements of the structural elements. |
author |
Sicha Pillaca, Juan Carlos Molina Ramirez, Alexander Vasquez, Victor Arana |
author_facet |
Sicha Pillaca, Juan Carlos Molina Ramirez, Alexander Vasquez, Victor Arana |
author_sort |
Sicha Pillaca, Juan Carlos |
title |
Structural design of confined masonry buildings using artificial neural networks |
title_short |
Structural design of confined masonry buildings using artificial neural networks |
title_full |
Structural design of confined masonry buildings using artificial neural networks |
title_fullStr |
Structural design of confined masonry buildings using artificial neural networks |
title_full_unstemmed |
Structural design of confined masonry buildings using artificial neural networks |
title_sort |
structural design of confined masonry buildings using artificial neural networks |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2021 |
url |
http://hdl.handle.net/10757/656414 |
work_keys_str_mv |
AT sichapillacajuancarlos structuraldesignofconfinedmasonrybuildingsusingartificialneuralnetworks AT molinaramirezalexander structuraldesignofconfinedmasonrybuildingsusingartificialneuralnetworks AT vasquezvictorarana structuraldesignofconfinedmasonrybuildingsusingartificialneuralnetworks |
_version_ |
1719409235541884928 |