Structural design of confined masonry buildings using artificial neural networks

El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. === The aim of this article is to use artificial neural networks (ANN) to perform the structural design of confined masonry buildings. ANN is easy to o...

Full description

Bibliographic Details
Main Authors: Sicha Pillaca, Juan Carlos, Molina Ramirez, Alexander, Vasquez, Victor Arana
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:http://hdl.handle.net/10757/656414
id ndltd-PERUUPC-oai-repositorioacademico.upc.edu.pe-10757-656414
record_format oai_dc
spelling ndltd-PERUUPC-oai-repositorioacademico.upc.edu.pe-10757-6564142021-06-09T05:12:04Z Structural design of confined masonry buildings using artificial neural networks Sicha Pillaca, Juan Carlos Molina Ramirez, Alexander Vasquez, Victor Arana artificial intelligence artificial neural networks confined masonry structural design El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. The aim of this article is to use artificial neural networks (ANN) to perform the structural design of confined masonry buildings. ANN is easy to operate and allows to reduce the time and cost of seismic designs. To generate the artificial neural network, training models (traditional confined masonry designs) are used to identify the input and output parameters. From this, the final architecture and activation functions are defined for each layer of the ANN. Finally, ANN training is carried out using the backpropagation algorithm to obtain the matrix of weights and thresholds that allow the network to operate and provide preliminary structural designs with a 10% margin of error, with respect to the traditional design, in the dimensions and reinforcements of the structural elements. 2021-06-08T13:21:47Z 2021-06-08T13:21:47Z 2020-09-30 info:eu-repo/semantics/article 10.1109/CONIITI51147.2020.9240404 http://hdl.handle.net/10757/656414 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings 2-s2.0-85096593247 SCOPUS_ID:85096593247 0000 0001 2196 144X eng https://ieeexplore.ieee.org/document/9240404 info:eu-repo/semantics/embargoedAccess application/html Institute of Electrical and Electronics Engineers Inc. 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings
collection NDLTD
language English
format Article
sources NDLTD
topic artificial intelligence
artificial neural networks
confined masonry
structural design
spellingShingle artificial intelligence
artificial neural networks
confined masonry
structural design
Sicha Pillaca, Juan Carlos
Molina Ramirez, Alexander
Vasquez, Victor Arana
Structural design of confined masonry buildings using artificial neural networks
description El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. === The aim of this article is to use artificial neural networks (ANN) to perform the structural design of confined masonry buildings. ANN is easy to operate and allows to reduce the time and cost of seismic designs. To generate the artificial neural network, training models (traditional confined masonry designs) are used to identify the input and output parameters. From this, the final architecture and activation functions are defined for each layer of the ANN. Finally, ANN training is carried out using the backpropagation algorithm to obtain the matrix of weights and thresholds that allow the network to operate and provide preliminary structural designs with a 10% margin of error, with respect to the traditional design, in the dimensions and reinforcements of the structural elements.
author Sicha Pillaca, Juan Carlos
Molina Ramirez, Alexander
Vasquez, Victor Arana
author_facet Sicha Pillaca, Juan Carlos
Molina Ramirez, Alexander
Vasquez, Victor Arana
author_sort Sicha Pillaca, Juan Carlos
title Structural design of confined masonry buildings using artificial neural networks
title_short Structural design of confined masonry buildings using artificial neural networks
title_full Structural design of confined masonry buildings using artificial neural networks
title_fullStr Structural design of confined masonry buildings using artificial neural networks
title_full_unstemmed Structural design of confined masonry buildings using artificial neural networks
title_sort structural design of confined masonry buildings using artificial neural networks
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2021
url http://hdl.handle.net/10757/656414
work_keys_str_mv AT sichapillacajuancarlos structuraldesignofconfinedmasonrybuildingsusingartificialneuralnetworks
AT molinaramirezalexander structuraldesignofconfinedmasonrybuildingsusingartificialneuralnetworks
AT vasquezvictorarana structuraldesignofconfinedmasonrybuildingsusingartificialneuralnetworks
_version_ 1719409235541884928