An Engage or Retreat differential game with Mobile Agents

Bibliographic Details
Main Author: Chandrasekar, Swathi
Language:English
Published: Wright State University / OhioLINK 2017
Subjects:
Online Access:http://rave.ohiolink.edu/etdc/view?acc_num=wright1503716818890551
id ndltd-OhioLink-oai-etd.ohiolink.edu-wright1503716818890551
record_format oai_dc
spelling ndltd-OhioLink-oai-etd.ohiolink.edu-wright15037168188905512021-08-03T07:03:57Z An Engage or Retreat differential game with Mobile Agents Chandrasekar, Swathi Electrical Engineering Differential game theory Optimal control Game theory Nash equilibrium The thesis is aimed at developing optimal defensive strategies that dissuade an attacker from engaging a defender while simultaneously persuading the attacker to retreat. A two-player Engage or Retreat differential game is developed in which one player represents a mobile attacker and the other player represents a mobile defender. Both players are modeled as massless particles moving with constant velocity. The choice to terminate the game in engagement or retreat lies with the attacker. The defender indirectly influences the choice of the attacker by manipulating the latter's utility function. In other words, the defender co-operates with the attacker so that retreat appears to be the best option available.The solution to the differential game is obtained by solving two related optimization problems namely the Game Of Engagement and Optimal Constrained Retreat. In the Game of Engagement, the attacker terminates the game by capturing the defender.In the Optimal Constrained Retreat, a value function constraint is imposed which deters the attacker's retreat trajectory from entering into a region where it may lead to engagement. Such regions where constrained retreat occurs are known as escort regions. The solutions to these two problems are used to construct the global equilibrium solutions to the Engage or Retreat differential game.The global equilibrium solution divides the admissible state space into two regions that contain qualitatively different equilibrium control strategies. Numerical solutions are included to support the theory presented. 2017-09-01 English text Wright State University / OhioLINK http://rave.ohiolink.edu/etdc/view?acc_num=wright1503716818890551 http://rave.ohiolink.edu/etdc/view?acc_num=wright1503716818890551 unrestricted This thesis or dissertation is protected by copyright: all rights reserved. It may not be copied or redistributed beyond the terms of applicable copyright laws.
collection NDLTD
language English
sources NDLTD
topic Electrical Engineering
Differential game theory
Optimal control
Game theory
Nash equilibrium

spellingShingle Electrical Engineering
Differential game theory
Optimal control
Game theory
Nash equilibrium

Chandrasekar, Swathi
An Engage or Retreat differential game with Mobile Agents
author Chandrasekar, Swathi
author_facet Chandrasekar, Swathi
author_sort Chandrasekar, Swathi
title An Engage or Retreat differential game with Mobile Agents
title_short An Engage or Retreat differential game with Mobile Agents
title_full An Engage or Retreat differential game with Mobile Agents
title_fullStr An Engage or Retreat differential game with Mobile Agents
title_full_unstemmed An Engage or Retreat differential game with Mobile Agents
title_sort engage or retreat differential game with mobile agents
publisher Wright State University / OhioLINK
publishDate 2017
url http://rave.ohiolink.edu/etdc/view?acc_num=wright1503716818890551
work_keys_str_mv AT chandrasekarswathi anengageorretreatdifferentialgamewithmobileagents
AT chandrasekarswathi engageorretreatdifferentialgamewithmobileagents
_version_ 1719452970755555328