Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet Fuels
Main Author: | |
---|---|
Language: | English |
Published: |
University of Dayton / OhioLINK
2011
|
Subjects: | |
Online Access: | http://rave.ohiolink.edu/etdc/view?acc_num=dayton1300553102 |
id |
ndltd-OhioLink-oai-etd.ohiolink.edu-dayton1300553102 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-OhioLink-oai-etd.ohiolink.edu-dayton13005531022021-08-03T05:35:37Z Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet Fuels Jiang, Hua Aerospace Engineering Mechanical Engineering jet fuel heat transfer deterioration high heat flux temperature peak supercritical fuel properties nozzle sudden expansion/contraction in flow path fuel deposition turbulence models rotation passage recirculation flow excess deposition <p>Jet fuel is used in high-performance military flight vehicles for cooling purposes before combustion. It is desirable to investigate the influence of the flow and heating conditions on fuel heat transfer and thermal stability to develop viable mitigation strategies. Computational fluid dynamics (CFD) simulations and experiments can provide the understanding of the fuel physical phenomena which involves the fluid dynamics, heat transfer and chemical reactions. Three distinct topics are studied: The first topic considers the effect of flow geometry on fuel oxidation and deposition. Experiments and CFD modeling were performed for fuels flowing through heated tubes which have either a sudden expansion or contraction. It was found that the peak deposition occurs near the maximum oxidation rate and excess deposition is formed near the step. This study provides information for the fuel system designer which can help minimize surface deposition due to fuel thermal oxidation. </p><p>In the second area of study, the fuel passed heated rotational test articles to investigate the effect of rotation on fuel heat transfer. The coupled effects of centrifugal forces and turbulent flow result in fuel temperatures that increase with rotational speed. This indicates that the convective heat transfer is enhanced as rotational speed increases. This work can assist the understanding of using jet fuel to cool the turbine engine.</p><p>In the third segment of research, the fuel was exposed to “rocket-like” conditions. This investigation is to explore the effect of high heat flux and high flow velocity on fuel heat transfer and oxidation/deposition. Simulations show a temperature difference over several hundred degrees in the radial direction within the very thin thermal boundary layer under rapid heating. The fuel contacting the interior wall is locally heated to a supercritical state. As a result, the heat transfer is deteriorated in the supercritical boundary layer. Both simulated and measured deposit profiles show a peak deposit near the end of the heated section. These observations may eventually have an application to the design of high speed supersonic vehicles with improved cooling capabilities.</p> 2011-05-12 English text University of Dayton / OhioLINK http://rave.ohiolink.edu/etdc/view?acc_num=dayton1300553102 http://rave.ohiolink.edu/etdc/view?acc_num=dayton1300553102 unrestricted This thesis or dissertation is protected by copyright: all rights reserved. It may not be copied or redistributed beyond the terms of applicable copyright laws. |
collection |
NDLTD |
language |
English |
sources |
NDLTD |
topic |
Aerospace Engineering Mechanical Engineering jet fuel heat transfer deterioration high heat flux temperature peak supercritical fuel properties nozzle sudden expansion/contraction in flow path fuel deposition turbulence models rotation passage recirculation flow excess deposition |
spellingShingle |
Aerospace Engineering Mechanical Engineering jet fuel heat transfer deterioration high heat flux temperature peak supercritical fuel properties nozzle sudden expansion/contraction in flow path fuel deposition turbulence models rotation passage recirculation flow excess deposition Jiang, Hua Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet Fuels |
author |
Jiang, Hua |
author_facet |
Jiang, Hua |
author_sort |
Jiang, Hua |
title |
Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet Fuels |
title_short |
Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet Fuels |
title_full |
Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet Fuels |
title_fullStr |
Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet Fuels |
title_full_unstemmed |
Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet Fuels |
title_sort |
effect of changes in flow geometry, rotation and high heat flux on fluid dynamics, heat transfer and oxidation/deposition of jet fuels |
publisher |
University of Dayton / OhioLINK |
publishDate |
2011 |
url |
http://rave.ohiolink.edu/etdc/view?acc_num=dayton1300553102 |
work_keys_str_mv |
AT jianghua effectofchangesinflowgeometryrotationandhighheatfluxonfluiddynamicsheattransferandoxidationdepositionofjetfuels |
_version_ |
1719422236221243392 |