CHEMICAL EXPANSIVITY IN CERAMIC OXYGEN TRANSPORT MATERIALS
Main Author: | |
---|---|
Language: | English |
Published: |
Case Western Reserve University School of Graduate Studies / OhioLINK
2020
|
Subjects: | |
Online Access: | http://rave.ohiolink.edu/etdc/view?acc_num=case159439738367673 |
id |
ndltd-OhioLink-oai-etd.ohiolink.edu-case159439738367673 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-OhioLink-oai-etd.ohiolink.edu-case1594397383676732021-08-03T07:15:41Z CHEMICAL EXPANSIVITY IN CERAMIC OXYGEN TRANSPORT MATERIALS Cai, Andrew Materials Science Engineering Oxygen transport membranes perovskite reduce chemical strain chemical expansion mixed electronic ionic conducting ceramic methane reforming syngas Chemical expansion of eight lanthanum strontium ferrite (LSF)-based oxygen transport materials (four purchased, four synthesized) was assessed isothermally at 800 °C, 900 °C, and 1,000 °C at oxygen potentials from 10<sup>-0.678</sup> atm (air) to 10<sup>-20.3</sup>–10<sup>-15.9</sup> atm (depending on temperature). The following compositions were tested: (La<sub>0.60</sub>Sr<sub>0.40</sub>)<sub>0.995</sub> Co<sub>0.20</sub>Fe<sub>0.80</sub>O<sub>3-δ</sub>, (La<sub>0.80</sub>Sr<sub>0.20</sub>)<sub>0.95</sub>FeO<sub>3-δ</sub>, (La<sub>0.20</sub>Sr<sub>0.80</sub>) Cr<sub>0.20</sub>Fe<sub>0.80</sub>O<sub>3-δ</sub>, (La<sub>0.20</sub>Sr<sub>0.80</sub>) Co<sub>0.10</sub>Cr<sub>0.20</sub>Fe<sub>0.70</sub>O<sub>3-δ</sub>, (La<sub>0.50</sub>Sr<sub>0.50</sub>)Cr<sub>0.20</sub>Fe<sub>0.80</sub>O<sub>3-δ</sub>, (La<sub>0.20</sub>Sr<sub>0.80</sub>) Co<sub>0.10</sub>Cr<sub>0.10</sub>Fe<sub>0.80</sub>O<sub>3-δ</sub>, (La<sub>0.20</sub>Sr<sub>0.80</sub>)Co<sub>0.10</sub>Cr<sub>0.10</sub>Mg<sub>0.05</sub>Fe<sub>0.75</sub>O<sub>3-δ</sub>, and (La<sub>0.50</sub>Sr<sub>0.50</sub>) Cr<sub>0.20</sub>Mg<sub>0.05</sub>Fe<sub>0.75</sub>O<sub>3-δ</sub>. Powder synthesis utilized aqueous nitrate solutions with malic acid added as a complexing agent. These exhibited good agreement with their target compositions. All eight materials sintered to ≥95% density in 16 hours at 1250–1350 °C. At the lowest partial pressure of oxygen (10<sup>-20.3</sup>, 10<sup>-17.9</sup>, 10<sup>-15.9</sup>) at their respective isothermal temperatures (800 °C, 900 °C, 1000 °C), three compositions demonstrated the lowest chemical expansion: (La<sub>0.60</sub>Sr<sub>0.40</sub>)<sub>0.995</sub> Co<sub>0.20</sub>Fe<sub>0.80</sub>O<sub>3-δ</sub>, (La<sub>0.20</sub>Sr<sub>0.80</sub>) Cr<sub>0.20</sub>Fe<sub>0.80</sub>O<sub>3-δ</sub>, and (La<sub>0.20</sub>Sr<sub>0.80</sub>)Co<sub>0.10</sub>Cr<sub>0.10</sub>Mg<sub>0.05</sub>Fe<sub>0.75</sub>O<sub>3-δ</sub>. Among these materials, (La<sub>0.60</sub>Sr<sub>0.40</sub>)<sub>0.995</sub> Co<sub>0.20</sub>Fe<sub>0.80</sub>O<sub>3-δ</sub> had a higher coefficient of chemical expansion compared to (La<sub>0.20</sub>Sr<sub>0.80</sub>) Cr<sub>0.20</sub>Fe<sub>0.80</sub>O<sub>3-δ</sub>, which is attributed to chromium being less reducible and therefore causing less lattice distortion compared to cobalt. It was concluded that (La<sub>0.60</sub>Sr<sub>0.40</sub>)<sub>0.995</sub> Co<sub>0.20</sub>Fe<sub>0.80</sub>O<sub>3-δ</sub> had low chemical expansion due to the A-site deficiency, and both (La<sub>0.20</sub>Sr<sub>0.80</sub>) Cr<sub>0.20</sub>Fe<sub>0.80</sub>O<sub>3-δ</sub> and (La<sub>0.20</sub>Sr<sub>0.80</sub>)Co<sub>0.10</sub>Cr<sub>0.10</sub>Mg<sub>0.05</sub>Fe<sub>0.75</sub>O<sub>3-δ</sub> due to their less reducible chromium and magnesium content. 2020-08-27 English text Case Western Reserve University School of Graduate Studies / OhioLINK http://rave.ohiolink.edu/etdc/view?acc_num=case159439738367673 http://rave.ohiolink.edu/etdc/view?acc_num=case159439738367673 unrestricted This thesis or dissertation is protected by copyright: some rights reserved. It is licensed for use under a Creative Commons license. Specific terms and permissions are available from this document's record in the OhioLINK ETD Center. |
collection |
NDLTD |
language |
English |
sources |
NDLTD |
topic |
Materials Science Engineering Oxygen transport membranes perovskite reduce chemical strain chemical expansion mixed electronic ionic conducting ceramic methane reforming syngas |
spellingShingle |
Materials Science Engineering Oxygen transport membranes perovskite reduce chemical strain chemical expansion mixed electronic ionic conducting ceramic methane reforming syngas Cai, Andrew CHEMICAL EXPANSIVITY IN CERAMIC OXYGEN TRANSPORT MATERIALS |
author |
Cai, Andrew |
author_facet |
Cai, Andrew |
author_sort |
Cai, Andrew |
title |
CHEMICAL EXPANSIVITY IN CERAMIC OXYGEN TRANSPORT MATERIALS |
title_short |
CHEMICAL EXPANSIVITY IN CERAMIC OXYGEN TRANSPORT MATERIALS |
title_full |
CHEMICAL EXPANSIVITY IN CERAMIC OXYGEN TRANSPORT MATERIALS |
title_fullStr |
CHEMICAL EXPANSIVITY IN CERAMIC OXYGEN TRANSPORT MATERIALS |
title_full_unstemmed |
CHEMICAL EXPANSIVITY IN CERAMIC OXYGEN TRANSPORT MATERIALS |
title_sort |
chemical expansivity in ceramic oxygen transport materials |
publisher |
Case Western Reserve University School of Graduate Studies / OhioLINK |
publishDate |
2020 |
url |
http://rave.ohiolink.edu/etdc/view?acc_num=case159439738367673 |
work_keys_str_mv |
AT caiandrew chemicalexpansivityinceramicoxygentransportmaterials |
_version_ |
1719457388157730816 |