Single-Molecule Interfacial Electron Transfer in Solar Energy Conversion and Bioremediation

Bibliographic Details
Main Author: Sevinç, Papatya C.
Language:English
Published: Bowling Green State University / OhioLINK 2013
Subjects:
Online Access:http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1367339768
id ndltd-OhioLink-oai-etd.ohiolink.edu-bgsu1367339768
record_format oai_dc
spelling ndltd-OhioLink-oai-etd.ohiolink.edu-bgsu13673397682021-08-03T05:22:46Z Single-Molecule Interfacial Electron Transfer in Solar Energy Conversion and Bioremediation Sevinç, Papatya C. Chemistry Physical Chemistry Single-molecule electron transfer solar energy conversion bioremediation The present thesis describes the investigation of the factors affecting the electron transfer dynamics in the semiconductor-molecule and metal-molecule interfaces as well as the bacterial heavy-metal reduction on the cell surface of dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The investigation of these systems was mainly performed by parabolic-mirror-assisted tip-enhanced near-field topographic-spectroscopic imaging, surface-enhanced Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. The influence of the surface states and the electric field on the charge transfer process and the interface properties was studied on TiO2-alizarin complex. It has been demonstrated that once alizarin is introduced to the TiO2 surface, the electronic delocalization occurs at the interface, suggesting the involvement of the surface states in charge transfer coupling. Moreover, it has been shown that the electric field significantly alters the coupling at the interface which is also expected to alter the electron transfer dynamics. Furthermore, the redox reactions at the silver-hemin interface has been probed by the prominent fluctuations of the Raman frequency of a specific vibrational mode, v4, which is a typical marker of the redox state of the iron center in a hemin molecule and suggested that the single-molecule redox reaction dynamics at the interface is primarily driven by thermal fluctuations.Lastly, the experimental data obtained in the investigation of Cr(VI) reduction through the outer membrane heme-proteins, MtrC and OmcA, of the metal-reducing bacterium Shewanella oneidensis MR-1 suggested that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may coexist and the cooperation of surface proteins, OmcA and MtrC, makes the reduction reaction most efficient. 2013-05-16 English text Bowling Green State University / OhioLINK http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1367339768 http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1367339768 unrestricted This thesis or dissertation is protected by copyright: all rights reserved. It may not be copied or redistributed beyond the terms of applicable copyright laws.
collection NDLTD
language English
sources NDLTD
topic Chemistry
Physical Chemistry
Single-molecule
electron transfer
solar energy conversion
bioremediation
spellingShingle Chemistry
Physical Chemistry
Single-molecule
electron transfer
solar energy conversion
bioremediation
Sevinç, Papatya C.
Single-Molecule Interfacial Electron Transfer in Solar Energy Conversion and Bioremediation
author Sevinç, Papatya C.
author_facet Sevinç, Papatya C.
author_sort Sevinç, Papatya C.
title Single-Molecule Interfacial Electron Transfer in Solar Energy Conversion and Bioremediation
title_short Single-Molecule Interfacial Electron Transfer in Solar Energy Conversion and Bioremediation
title_full Single-Molecule Interfacial Electron Transfer in Solar Energy Conversion and Bioremediation
title_fullStr Single-Molecule Interfacial Electron Transfer in Solar Energy Conversion and Bioremediation
title_full_unstemmed Single-Molecule Interfacial Electron Transfer in Solar Energy Conversion and Bioremediation
title_sort single-molecule interfacial electron transfer in solar energy conversion and bioremediation
publisher Bowling Green State University / OhioLINK
publishDate 2013
url http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1367339768
work_keys_str_mv AT sevincpapatyac singlemoleculeinterfacialelectrontransferinsolarenergyconversionandbioremediation
_version_ 1719418993767350272