ESCA studies of a brass surface subjected to gas-jet enhanced sputtering

The inert gas ion bombardment of solid surfaces has found many uses in the field of analytical chemistry. In one method of spectrochemical analysis, inert gas ion bombardment in a glow discharge is used to produce an atomic vapor, representative of the sample bulk, which is analyzed using atomic abs...

Full description

Bibliographic Details
Main Author: Govier, R. D.
Other Authors: Piepmeier, Edward H.
Language:en_US
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/1957/36177
Description
Summary:The inert gas ion bombardment of solid surfaces has found many uses in the field of analytical chemistry. In one method of spectrochemical analysis, inert gas ion bombardment in a glow discharge is used to produce an atomic vapor, representative of the sample bulk, which is analyzed using atomic absorption techniques. Gas jets directed at the sample surface during the discharge increase the removal rate of sample material from the surface. Such bombardment of solid surfaces results in changes to the surface which are visually evident in the formation of craters and surface deposits. This thesis was designed to gain a better understanding of the changes in a brass surface caused by jet-enhanced sputtering. Electron spectroscopy for chemical analysis (ESCA) is used to study selected regions of the surface. Changes in chemical composition were observed as successive atomic layers were removed from the sample. The results of this investigation indicate that the effects of ion bombardment can be explained in terms of the selective sputtering of one bulk component over another. The surfaces of the sputtered craters were found to be depleted of the higher sputtering yield component, Zn, when compared to the bulk composition. In a deposit, the component with the highest sputtering yield was found to be more concentrated in layers closest to the bulk material. The component with the lowest sputtering yield was found at relatively higher concentrations nearest the deposit surface. The component with the higher sputtering yield is selectively sputtered first during the glow discharge, and consequently is deposited with a higher concentration closest to the bulk, the converse being true for the lowest sputtering yield component. === Graduation date: 1993