Molecular dynamics applications and techniques : a comparison study of silica potentials and techniques for accelerating computation

This thesis presents a study of applications and techniques for molecular dynamics simulations. Three studies are presented that are intended to improve our ability to simulate larger systems more realistically. A comparison study of two- and three-body potential models for liquid and amorphous Si0�...

Full description

Bibliographic Details
Main Author: Wolff, David
Other Authors: Rudd, Walter
Language:en_US
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1957/33213
Description
Summary:This thesis presents a study of applications and techniques for molecular dynamics simulations. Three studies are presented that are intended to improve our ability to simulate larger systems more realistically. A comparison study of two- and three-body potential models for liquid and amorphous Si0��� is presented. The structural, vibrational, and dynamic properties of the substance are compared using two- and three-body potential energy models against experimental results. The three-body interaction does poorly at reproducing the experimental phonon density of states, but better at reproducing the Si-O-Si bond angle distribution. The three-body interaction also produces much higher diffusivities than the two-body interactions. A study of tabulated functions in molecular dynamics is presented. Results show that the use of tabulated functions as a method for accelerating the force and potential energy calculation can be advantageous for interactions above a certain complexity level. The decrease in precision due to the use of tabulated functions is negligible when the tables are sufficiently large. Finally, an investigation into the benefits of multi-threaded programming for molecular dynamics is presented. === Graduation date: 1999