A remotely controlled power quality test platform for characterizing the ride-through capabilities of adjustable speed drives
With the increased attention on high efficiency and controllability of industrial processes, as well as reduced weight, volume and cost of consumer products, the applications of nonlinear power electronic converters such as adjustable speed drives (ASDs) are showing a rapid rise. Power Quality (PQ)...
Main Author: | |
---|---|
Other Authors: | |
Language: | en_US |
Published: |
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/1957/32614 |
id |
ndltd-ORGSU-oai-ir.library.oregonstate.edu-1957-32614 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-ORGSU-oai-ir.library.oregonstate.edu-1957-326142012-08-21T03:13:47ZA remotely controlled power quality test platform for characterizing the ride-through capabilities of adjustable speed drivesMatheson, EvelynElectric power system stabilityElectric power systems -- Quality controlVariable speed drivesWith the increased attention on high efficiency and controllability of industrial processes, as well as reduced weight, volume and cost of consumer products, the applications of nonlinear power electronic converters such as adjustable speed drives (ASDs) are showing a rapid rise. Power Quality (PQ) is becoming an increasing concern with the growth of both sensitive and disturbing nonlinear loads in the residential, commercial and industrial levels of the power system, where PQ related disruptions can cause system malfunction, product loss, and hardware damage resulting in costly data loss and downtime. Investigating and mitigating PQ issues pertaining to the input supply of ASDs and other sensitive power electronic equipment is extremely important in maintaining a high level of productivity. In response to these concerns, this research focuses on the development of a power quality test platform (PQTP) that has been implemented at Oregon State University (OSU), in the Motor Systems Resource Facility (MSRF). The central component of the PQTP is a 120kVA programmable ac power source with an integrated arbitrary waveform generator (AWG) which creates realistic voltage disturbance conditions that can be used to characterize ride-through capabilities of industrial processes in a controlled environment. Also presented is a command driver database that has been created and tested, using Lab VIEW, which contains the functionality necessary to conduct a wide range of power quality research and testing projects by remotely configuring and controlling the AWG. The power quality research and testing capabilities of the PQTP are demonstrated with ASD diode-bridge rectifier operation analysis and ride-through characterization. This research shows the transition of an ASD's three-phase diode rectifier into single-phase diode rectifier operation when relatively small single-phase voltage sags are applied to the input. Also shown are ride-through characterizations of varying sizes and configurations of ASDs when subjected to single, two, and three-phase voltage sags as well as capacitor switching transients. In addition, ASD topologies providing improved ride-through capabilities are determined.Graduation date: 2002von Jouanne, Annette R.2012-08-20T19:40:01Z2012-08-20T19:40:01Z2001-06-082001-06-08Thesis/Dissertationhttp://hdl.handle.net/1957/32614en_US |
collection |
NDLTD |
language |
en_US |
sources |
NDLTD |
topic |
Electric power system stability Electric power systems -- Quality control Variable speed drives |
spellingShingle |
Electric power system stability Electric power systems -- Quality control Variable speed drives Matheson, Evelyn A remotely controlled power quality test platform for characterizing the ride-through capabilities of adjustable speed drives |
description |
With the increased attention on high efficiency and controllability of industrial processes, as
well as reduced weight, volume and cost of consumer products, the applications of nonlinear
power electronic converters such as adjustable speed drives (ASDs) are showing a rapid rise.
Power Quality (PQ) is becoming an increasing concern with the growth of both sensitive and
disturbing nonlinear loads in the residential, commercial and industrial levels of the power
system, where PQ related disruptions can cause system malfunction, product loss, and hardware
damage resulting in costly data loss and downtime. Investigating and mitigating PQ issues
pertaining to the input supply of ASDs and other sensitive power electronic equipment is
extremely important in maintaining a high level of productivity.
In response to these concerns, this research focuses on the development of a power quality
test platform (PQTP) that has been implemented at Oregon State University (OSU), in the Motor
Systems Resource Facility (MSRF). The central component of the PQTP is a 120kVA
programmable ac power source with an integrated arbitrary waveform generator (AWG) which
creates realistic voltage disturbance conditions that can be used to characterize ride-through
capabilities of industrial processes in a controlled environment. Also presented is a command
driver database that has been created and tested, using Lab VIEW, which contains the
functionality necessary to conduct a wide range of power quality research and testing projects by
remotely configuring and controlling the AWG.
The power quality research and testing capabilities of the PQTP are demonstrated with ASD
diode-bridge rectifier operation analysis and ride-through characterization. This research shows
the transition of an ASD's three-phase diode rectifier into single-phase diode rectifier operation
when relatively small single-phase voltage sags are applied to the input. Also shown are ride-through
characterizations of varying sizes and configurations of ASDs when subjected to single,
two, and three-phase voltage sags as well as capacitor switching transients. In addition, ASD
topologies providing improved ride-through capabilities are determined. === Graduation date: 2002 |
author2 |
von Jouanne, Annette R. |
author_facet |
von Jouanne, Annette R. Matheson, Evelyn |
author |
Matheson, Evelyn |
author_sort |
Matheson, Evelyn |
title |
A remotely controlled power quality test platform for characterizing the ride-through capabilities of adjustable speed drives |
title_short |
A remotely controlled power quality test platform for characterizing the ride-through capabilities of adjustable speed drives |
title_full |
A remotely controlled power quality test platform for characterizing the ride-through capabilities of adjustable speed drives |
title_fullStr |
A remotely controlled power quality test platform for characterizing the ride-through capabilities of adjustable speed drives |
title_full_unstemmed |
A remotely controlled power quality test platform for characterizing the ride-through capabilities of adjustable speed drives |
title_sort |
remotely controlled power quality test platform for characterizing the ride-through capabilities of adjustable speed drives |
publishDate |
2012 |
url |
http://hdl.handle.net/1957/32614 |
work_keys_str_mv |
AT mathesonevelyn aremotelycontrolledpowerqualitytestplatformforcharacterizingtheridethroughcapabilitiesofadjustablespeeddrives AT mathesonevelyn remotelycontrolledpowerqualitytestplatformforcharacterizingtheridethroughcapabilitiesofadjustablespeeddrives |
_version_ |
1716392816421109760 |