Flavor chemistry of Swiss cheese

The unique flavor of high quality Swiss cheese is difficult to reproduce in commercial market cheese. Swiss cheese flavor has never been duplicated or thoroughly understood. New techniques and advances in flavor research have enabled better definition and understanding of food flavors. Therefore, it...

Full description

Bibliographic Details
Main Author: Langler, James Edward
Other Authors: Day, Edgar Allen
Language:en_US
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1957/26791
id ndltd-ORGSU-oai-ir.library.oregonstate.edu-1957-26791
record_format oai_dc
spelling ndltd-ORGSU-oai-ir.library.oregonstate.edu-1957-267912012-03-09T15:57:59ZFlavor chemistry of Swiss cheeseLangler, James EdwardSwiss cheeseDairy products -- AnalysisFlavorDairy products -- Flavor and odorThe unique flavor of high quality Swiss cheese is difficult to reproduce in commercial market cheese. Swiss cheese flavor has never been duplicated or thoroughly understood. New techniques and advances in flavor research have enabled better definition and understanding of food flavors. Therefore, it was desirable to make a detailed investigation of Swiss cheese flavor. Neutral volatile flavor compounds were isolated from Swiss cheese fat by low-temperature low-pressure distillation. The compounds were separated by temperature programmed gas chromatography. Direct analysis of cheese fat and whole cheese from four domestic and two imported good flavored cheeses by gas entrainment and on-column trapping provided a further means of isolation of volatile flavor compounds in Swiss cheese. Gas chromatography in conjunction with rapid scan mass spectrometry and relative retention time data were used to identify compounds. Compounds positively identified by the distillation and on-column trapping techniques were as follows: methanol, ethanol, 1-propanol, 1-butanol, 2-pentanol, trans-2-hexene-1-ol, 2-phenylethanol, acetaldehyde, 2-methyl propanal, 2-methyl butyraldehyde, benzaldehyde, phenylacetaldehyde, acetone, butanone, 2-pentanone, 2-hexanone, 2-heptanone, 2-nonanone, 2-undecanone, 2-tridecanone, 2-pentadecanone, hexane, octane, 1-octene, nonane, 1-nonene, dodecane, pentadecane, toluene, α-pinene, methyl acetate, methyl hexanoate, methyl octanoate, methyl decanoate, ethyl propionate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl dodecanoate, butyl acetate, 3-methyl butyl acetate, γ-valerolactone, γ-dodecalactone, δ-octalactone, δ-decalactone, δ-dodecalactone, dimethyl sulfide, diacetyl, benzothiazole, o-dichlorobenzene, 1, 2, 4-trichlorobenzene, di-isobutyl adipate, and chloroform. Compounds tentatively identified include an aromatic hydrocarbon, pinane, α-fenchene, ethyl benzene, a di-methyl benzene, methyl benzoate, 2-phenyl-2-methyl butane, 5-methyl-5-ethyl decane, 3-methyl butyl octanoate, 2, 5-dimethyl tetra decane, methyl vinyl ether and 2-methyl propenal. The concentration of selected volatile compounds identified by the on-column trapping technique were determined by relating their peak heights to known quantities of compound. Average concentrations calculated from the mean values for all the six cheeses and expressed in parts per million were as follows: dimethyl sulfide. 0.107; diacetyl, 0.8; acetaldehyde, 1.4; acetone, 1.6; butanone, 0.3; 2-methyl butyraldehyde, 0.42; 2-pentanone, 0.98; 2-heptanone, 0.45; ethanol, 16.3; 2-butanol, 0.3; 1-propanol, 2.9; 1-butanol, 0.7; methyl hexanoate, 1.5; and ethyl butanoate, 0.6. Liquid-liquid partition chromatography and gas chromatography were utilized to determine quantitatively the major free, fatty acids in the six Swiss cheeses. 2-Methyl butyric acid was detected in all cheeses and varied from 9.0 to 100.0 mg/kg cheese. The other isomeric acid, 3-methyl butyric, was detected in only two cheeses. Formic acid was detected in only one cheese. No n-valeric or 2-methyl propionic acids were detected. A synthetic Swiss cheese flavor was prepared utilizing the data obtained in this investigation and that available in the literature for free amino acids. A satisfactory reproduction of Swiss cheese flavor could be achieved only if the mixture contained free fatty acids, volatile constituents, and free amino acids and was adjusted to the pH of natural cheese.Graduation date: 1966Day, Edgar Allen2012-01-17T21:11:35Z2012-01-17T21:11:35Z1966-03-311966-03-31Thesis/Dissertationhttp://hdl.handle.net/1957/26791en_US
collection NDLTD
language en_US
sources NDLTD
topic Swiss cheese
Dairy products -- Analysis
Flavor
Dairy products -- Flavor and odor
spellingShingle Swiss cheese
Dairy products -- Analysis
Flavor
Dairy products -- Flavor and odor
Langler, James Edward
Flavor chemistry of Swiss cheese
description The unique flavor of high quality Swiss cheese is difficult to reproduce in commercial market cheese. Swiss cheese flavor has never been duplicated or thoroughly understood. New techniques and advances in flavor research have enabled better definition and understanding of food flavors. Therefore, it was desirable to make a detailed investigation of Swiss cheese flavor. Neutral volatile flavor compounds were isolated from Swiss cheese fat by low-temperature low-pressure distillation. The compounds were separated by temperature programmed gas chromatography. Direct analysis of cheese fat and whole cheese from four domestic and two imported good flavored cheeses by gas entrainment and on-column trapping provided a further means of isolation of volatile flavor compounds in Swiss cheese. Gas chromatography in conjunction with rapid scan mass spectrometry and relative retention time data were used to identify compounds. Compounds positively identified by the distillation and on-column trapping techniques were as follows: methanol, ethanol, 1-propanol, 1-butanol, 2-pentanol, trans-2-hexene-1-ol, 2-phenylethanol, acetaldehyde, 2-methyl propanal, 2-methyl butyraldehyde, benzaldehyde, phenylacetaldehyde, acetone, butanone, 2-pentanone, 2-hexanone, 2-heptanone, 2-nonanone, 2-undecanone, 2-tridecanone, 2-pentadecanone, hexane, octane, 1-octene, nonane, 1-nonene, dodecane, pentadecane, toluene, α-pinene, methyl acetate, methyl hexanoate, methyl octanoate, methyl decanoate, ethyl propionate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl dodecanoate, butyl acetate, 3-methyl butyl acetate, γ-valerolactone, γ-dodecalactone, δ-octalactone, δ-decalactone, δ-dodecalactone, dimethyl sulfide, diacetyl, benzothiazole, o-dichlorobenzene, 1, 2, 4-trichlorobenzene, di-isobutyl adipate, and chloroform. Compounds tentatively identified include an aromatic hydrocarbon, pinane, α-fenchene, ethyl benzene, a di-methyl benzene, methyl benzoate, 2-phenyl-2-methyl butane, 5-methyl-5-ethyl decane, 3-methyl butyl octanoate, 2, 5-dimethyl tetra decane, methyl vinyl ether and 2-methyl propenal. The concentration of selected volatile compounds identified by the on-column trapping technique were determined by relating their peak heights to known quantities of compound. Average concentrations calculated from the mean values for all the six cheeses and expressed in parts per million were as follows: dimethyl sulfide. 0.107; diacetyl, 0.8; acetaldehyde, 1.4; acetone, 1.6; butanone, 0.3; 2-methyl butyraldehyde, 0.42; 2-pentanone, 0.98; 2-heptanone, 0.45; ethanol, 16.3; 2-butanol, 0.3; 1-propanol, 2.9; 1-butanol, 0.7; methyl hexanoate, 1.5; and ethyl butanoate, 0.6. Liquid-liquid partition chromatography and gas chromatography were utilized to determine quantitatively the major free, fatty acids in the six Swiss cheeses. 2-Methyl butyric acid was detected in all cheeses and varied from 9.0 to 100.0 mg/kg cheese. The other isomeric acid, 3-methyl butyric, was detected in only two cheeses. Formic acid was detected in only one cheese. No n-valeric or 2-methyl propionic acids were detected. A synthetic Swiss cheese flavor was prepared utilizing the data obtained in this investigation and that available in the literature for free amino acids. A satisfactory reproduction of Swiss cheese flavor could be achieved only if the mixture contained free fatty acids, volatile constituents, and free amino acids and was adjusted to the pH of natural cheese. === Graduation date: 1966
author2 Day, Edgar Allen
author_facet Day, Edgar Allen
Langler, James Edward
author Langler, James Edward
author_sort Langler, James Edward
title Flavor chemistry of Swiss cheese
title_short Flavor chemistry of Swiss cheese
title_full Flavor chemistry of Swiss cheese
title_fullStr Flavor chemistry of Swiss cheese
title_full_unstemmed Flavor chemistry of Swiss cheese
title_sort flavor chemistry of swiss cheese
publishDate 2012
url http://hdl.handle.net/1957/26791
work_keys_str_mv AT langlerjamesedward flavorchemistryofswisscheese
_version_ 1716390784071106560