Tide-topography coupling on a continental slope

Tide-topography coupling is important for understanding surface-tide energy loss, the intermittency of internal tides, and the cascade of internal-tide energy from large to small scales. Although tide-topography coupling has been observed and modeled for 50 years, the identification of surface and i...

Full description

Bibliographic Details
Main Author: Kelly, Samuel M.
Other Authors: Nash, Jonathan D.
Language:en_US
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/1957/19917
Description
Summary:Tide-topography coupling is important for understanding surface-tide energy loss, the intermittency of internal tides, and the cascade of internal-tide energy from large to small scales. Although tide-topography coupling has been observed and modeled for 50 years, the identification of surface and internal tides over arbitrary topography has not been standardized. Here, we begin by examining five surface/internal-tide decompositions and find that only one is (i) consistent with the normal-mode description of tides over a flat bottom, (ii) produces a physically meaningful depth-structure of internal-tide energy flux, and (iii) results in an established expression for internal-tide generation. Next, we examine the expression for internal-tide generation and identify how it is influenced by remotely-generated shoaling internal tides. We show that internal-tide generation is subject to both resonance and intermittency, and can not always be predicted from isolated regional models. Lastly, we quantify internal-tide generation and scattering on the Oregon Continental slope. First, we derive a previously unpublished expression for inter-modal energy conversion. Then we evaluate it using observations and numerical simulations. We find that the surface tide generates internal tides, which propagate offshore; while at the same time, low-mode internal tides shoal on the slope, scatter, and drive turbulent mixing. These results suggest that internal tides are unlikely to survive reflection from continental slopes, and that continental margins play an important role in deep-ocean tidal-energy dissipation. === Graduation date: 2011