Evaluation of intranasal gene delivery by a lipoplex formulation

Parkinson's disease (PD) is a debilitating neurodegenerative disorder that results in the progressive loss of dopaminergic (DA) neurons from a midbrain nucleus known as the substantia nigra. Loss of these neurons, which project to the dorsal striatum, an area involved in initiation of voluntary...

Full description

Bibliographic Details
Published:
Online Access:http://hdl.handle.net/2047/d20002584
id ndltd-NEU--neu-376907
record_format oai_dc
spelling ndltd-NEU--neu-3769072016-04-25T16:15:49ZEvaluation of intranasal gene delivery by a lipoplex formulationParkinson's disease (PD) is a debilitating neurodegenerative disorder that results in the progressive loss of dopaminergic (DA) neurons from a midbrain nucleus known as the substantia nigra. Loss of these neurons, which project to the dorsal striatum, an area involved in initiation of voluntary movement, causes motor deficits that include resting tremor, bradykinesia, and rigidity. Available treatment options seek to replace dopamine, directly stimulate striatal neurons, or extend the lifetime of remaining dopamine but such treatments do not prevent disease progression and all are subject to decreasing efficacy over the course of long-term use. Glial cell-line derived neurotrophic factor (GDNF) is a neuroprotective protein that has emerged as a therapeutic agent with the potential to halt the loss of dopaminergic neurons caused by PD. However, GDNF must reach structures deep within the brain to be effective, a problem that currently necessitates invasive surgery to deliver the protein. Gene therapy is one method for achieving long-term expression of therapeutic proteins, but available methods for delivering genes rely on viral vectors that can be both immuno- and oncogenic. With this study, we sought to assess a non-invasive, non-viral method for delivering therapeutic genes to the rat brain. Lipoplex plasmid DNA vectors encoding EGFP were administered intranasally to bypass the blood brain barrier. Analysis via fluorescence microscopy and sandwich ELISA revealed no significant differences in the level or apparent EGFP between animals that received empty liposomes, naked pEGFP, and pEGFP lipoplexes. However, several confounding variables were encountered and further study is warranted.http://hdl.handle.net/2047/d20002584
collection NDLTD
sources NDLTD
description Parkinson's disease (PD) is a debilitating neurodegenerative disorder that results in the progressive loss of dopaminergic (DA) neurons from a midbrain nucleus known as the substantia nigra. Loss of these neurons, which project to the dorsal striatum, an area involved in initiation of voluntary movement, causes motor deficits that include resting tremor, bradykinesia, and rigidity. Available treatment options seek to replace dopamine, directly stimulate striatal neurons, or extend the lifetime of remaining dopamine but such treatments do not prevent disease progression and all are subject to decreasing efficacy over the course of long-term use. Glial cell-line derived neurotrophic factor (GDNF) is a neuroprotective protein that has emerged as a therapeutic agent with the potential to halt the loss of dopaminergic neurons caused by PD. However, GDNF must reach structures deep within the brain to be effective, a problem that currently necessitates invasive surgery to deliver the protein. Gene therapy is one method for achieving long-term expression of therapeutic proteins, but available methods for delivering genes rely on viral vectors that can be both immuno- and oncogenic. With this study, we sought to assess a non-invasive, non-viral method for delivering therapeutic genes to the rat brain. Lipoplex plasmid DNA vectors encoding EGFP were administered intranasally to bypass the blood brain barrier. Analysis via fluorescence microscopy and sandwich ELISA revealed no significant differences in the level or apparent EGFP between animals that received empty liposomes, naked pEGFP, and pEGFP lipoplexes. However, several confounding variables were encountered and further study is warranted.
title Evaluation of intranasal gene delivery by a lipoplex formulation
spellingShingle Evaluation of intranasal gene delivery by a lipoplex formulation
title_short Evaluation of intranasal gene delivery by a lipoplex formulation
title_full Evaluation of intranasal gene delivery by a lipoplex formulation
title_fullStr Evaluation of intranasal gene delivery by a lipoplex formulation
title_full_unstemmed Evaluation of intranasal gene delivery by a lipoplex formulation
title_sort evaluation of intranasal gene delivery by a lipoplex formulation
publishDate
url http://hdl.handle.net/2047/d20002584
_version_ 1718236038641483776